首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluidized bed reactor is widely used in coal char-CO_2 gasification. In this work, the production of syngas by using a fluidized bed gasification technique was first investigated and then the effect of the produced syngas on the performance of the solid oxide fuel cell with a configuration of La_(0.4)Sr_(0.6) Co_(0.2)Fe_(0.7)Nb_(0.1)O_(3-δ)//La_(0.8)Sr_(0.2)Ga_(0.83)Mg_(0.17)O_(3-δ)//La_(0.4)Sr_(0.6) Co_(0.2)Fe_(0.7)Nb_(0.1)O_(3-δ)(LSCFN//LSGM//LSCFN)was studied. During the syngas production, we found that the volume fraction of CO increased with the increment of gasification temperature, and it reached a maximum value of 88.8%, corresponding to a composition of 0.76% H_2, 88.8% CO, and 10.44% CO_2, when the ratio of oxygen mass flow rate to that of coal char(MO2/Mchar) increased to 0.29. In the following utilization of the produced syngas in solid oxide fuel cells, it was found that the increasing CO volume fraction in the syngas results in a gradual increase of the peak power density of the LSCFN//LSGM//LSCFN cell. The maximum peak power density of 410 m W/cm~2 was achieved for the syngas produced at 0.29 of M_(O2)/M_(char). In the stability test, the cell voltage decreased by 4% at a constant current density of 0.475 A/cm~2 after 54 h when fueled with the syngas with the composition of 0.76% H2, 88.8% CO, and 10.44% CO_2.It reveals that a carbon deposition with the content of 13.66% in the anode is attributed to the cell performance degradation.  相似文献   

2.
The energy and CO2 consequences of substitution of a fossil-fuel-based hydrogen production unit with a biomass-based process in a large European refinery are studied in this study. In the base case, the biomass-based process consists in atmospheric, steam–blown indirect gasification of air-dried woody biomass followed by necessary upgrading steps. The effect of gradually substituting the current refinery hydrogen production unit with this process on global energy and CO2 targets is estimated first. Few process concepts are studied in further detail by looking at different degrees of heat integration with the remaining refinery units and possible polygeneration opportunities. The proposed process concepts are compared in terms of energy and exergy performances and potential reduction in refinery CO2 emission also taking into account the effect of marginal electricity. Compared to the base case, an increase by up to 8 % points in energy efficiency and 9 % points in exergy efficiency can be obtained by exploiting process integration opportunities. According to energy efficiency, steam production appears the best way to use excess heat available in the process while electricity generation through a heat recovery steam cycle appears the best option according to exergy efficiency results. All investigated cases yield to significant reduction in CO2 emissions at the refinery. It appears in particular that maximal emission reduction is obtained by producing extra steam to cover the demand of other refinery units if high efficiency marginal electricity scenarios are considered.  相似文献   

3.
A three-dimensional (3D) Eulerian two-fluid model with an in-house code was developed to simulate the gas-particle two-phase flow in the fluidized bed reactors. The CO2 capture with Ca-based sorbents in the steam methane reforming (SMR) process was studied with such model combined with the reaction kinetics. The sorption-enhanced steam methane reforming (SE-SMR) process, i.e., the integration of the process of SMR and the adsorption of CO2, was carried out in a bubbling fluidized bed reactor. The very high production of hydrogen in SE-SMR was obtained compared with the standard SMR process. The hydrogen molar fraction in gas phase was near the equilibrium. The breakthrough of the sorbent and the variation of the composition in the breakthrough period were studied. The effects of inlet gas superficial velocity and steam-to-carbon ratio (mass ratio of steam to methane in the inlet gas phase) on the reactions were studied. The simulated results are in agreement with the experimental results presented by Johnsen et al. (2006a, Chem Eng Sci 61:1195–1202).  相似文献   

4.
Among various clean energy technologies, one innovative option for reducing the emission of greenhouse gases (GHGs) and criteria pollutants involves pairing carbon capture and storage (CCS) with the production of synthetic fuels and electricity from a combination of coal and sustainably sourced biomass. With a relatively pure CO2 stream as an inherent byproduct of the process, most of the resulting GHG emissions can be eliminated by simply compressing the CO2 for pipeline transport. Subsequent storage of the CO2 output in underground reservoirs can result in very low—perhaps even near-zero—net GHG emissions, depending on the fraction of biomass as input and its CO2 signature. To examine the potential market penetration and environmental impact of coal-and-biomass-to-liquids-and-electricity (CBtLE), a system-wide sensitivity analysis was performed using the MARKet ALlocation energy model. CBtLE was found to be most competitive in scenarios with a combination of high oil prices, low CCS costs, and, unexpectedly, non-stringent carbon policies. In the scheme considered here (30 % biomass input on an energy basis and 85 % carbon capture), CBtLE fails to achieve significant market share in deep decarbonization scenarios, regardless of oil prices and CCS costs. Such facilities would likely require higher fractions of biomass feedstock and captured CO2 to successfully compete in a carbon-constrained energy system.  相似文献   

5.
Biogas has limited use in energy generation mainly due to the presence of hydrogen sulfide (H2S). Currently, most of the techniques employed in the removal of H2S from biogas have a chemical base, with high material costs and generating secondary pollutants. Biological processes for H2S removal have become effective and economical alternative techniques to traditional gas-treatment systems based on physicochemical techniques. Therefore, the aim of this work was to investigate the performance of a bench-scale biofilter for the removal of H2S present in synthetic biogas. In addition, CO2 and CH4 concentrations in the outlet biogas were evaluated. The inoculum used in the experiment was composed of Acidithiobacillus thiooxidans fixed on a packing of wood chips. Synthetic biogas was supplied to the system with a composition of 60 % CH4, 39 % CO2 and 1 % H2S. The biofilter operated continuously for 37 days with an average H2S removal efficiency of 75 ± 13 % and maximum of 97 %. The elimination capacity of the system reached an average of 130 ± 23 g m?3 h?1 and a maximum of 169 g m3 h?1. The biofiltration system showed an average reduction of only 6 % in CH4 concentration from biogas. Thus, besides being efficient in the removal of H2S, the system was able to maintain the biogas energy value.  相似文献   

6.
Coal-based power plants are largest emitter of CO2 as a single sector. To use fossil fuels (including coal), CO2 capture and storage is a visible option. But large energy requirement for this process and risk associated with storage of CO2 demand alternative solutions including recycling of captured CO2. In this paper, a co-production of power and urea is proposed using coal with captured CO2. Detailed ASPEN Plus® model is developed for this plant. As shift reaction for producing H2 has significant effect on output parameters, analysis is done for two different values of shift reaction, i.e., 90 and 95 % conversion. Plant consumes substantial auxiliary power (~19 % for the base case). Auxiliary power becomes a minimum for about 25 % captured CO2 utilization for 95 % shift conversion. An economy factor is also defined to estimate the economic advantage of utilizing captured CO2. Results show that economic advantage is obtained for CO2 utilization beyond ~5 % for 95 % water gas shift reaction and it is beyond ~10 % for a 90 % shift reaction.  相似文献   

7.
This study focuses on the potential of hydrogen-rich syngas production by CO2 reforming of methane over Co/Pr2O3 catalyst. The Co/Pr2O3 catalyst was synthesized via wet-impregnation method and characterized for physicochemical properties by TGA, XRD, BET, H2-TPR, FESEM, EDX, and FTIR. The CO2 reforming of methane over the as-synthesized catalyst was studied in a tubular stainless steel fixed-bed reactor at feed ratio ranged 0.1–1.0, temperature ranged 923–1023 K, and gas hourly space velocity (GHSV) of 30,000 h?1 under atmospheric pressure condition. The catalyst activity studies showed that the increase in the reaction temperature from 923 to 1023 K and feed ratio from 0.1 to 1.0 resulted in a corresponding increase in the reactant’s conversion and the product’s yields. At 1023 K and feed ratio of 1.0, the activity of the Co/Pr2O3 catalyst climaxed with CH4 and CO2 conversions of 41.49 and 42.36 %. Moreover, the catalyst activity at 1023 K and feed ratio of 1.0 resulted in the production of H2 and CO yields of 40.7 and 40.90 %, respectively. The syngas produced was estimated to have H2:CO ratio of 0.995, making it suitable as chemical building blocks for the production of oxygenated fuel and other value-added chemicals. The used Co/Pr2O3 catalyst which was characterized by TPO, XRD, and SEM-EDX show some evidence of carbon formation and deposition on its surface.  相似文献   

8.
Global economic development anticipates a growth in demand of the energy sector whose supply in the coming decades will remain achieved by burning fossil fuels. The need to stabilize the CO2 atmospheric concentration requires technologies for capturing and reutilization of this greenhouse gas. Such scenario motivates feasibility analysis of power generation with post-combustion capture of CO2 from the flue gas associated with its transformation into chemical commodities. Specifically, the economic performance of an integrated NGCC with post-combustion capture and utilization is evaluated to balance aggregated revenues with energy penalty. The proposed CO2 reutilization is the production of methanol (MeOH), organic carbonates—dimethyl carbonate (DMC) and ethylene carbonate (EC), and ethylene glycol (EG). The study uses CO2 capture with MEA (monoethanolamine), including compression of the captured gas followed by its conversion to methanol and organic carbonates, and separation of products with recycle of reactants. Three scenarios were evaluated corresponding to the capture of 30, 50, and 80 % of the CO2 present in the flue gas. The comparative analysis includes definition of design premises followed by synthesis of process flowsheet, process simulation in the three scenarios, with sizing of the main pieces of process equipments for economic analysis—capital and operational expenditures (CAPEX and OPEX). Results indicated economic feasibility for the three scenarios. Furthermore, energy and mass balances showed that the emissions from energy demand to drive reactions and separations surpasses the proposed sequestration of CO2 by chemical utilization in the scenarios of 30 and 50 % of CO2 capture from NGCC emissions. In reality, CO2 accounting for cases 1 and 2 reveals a “carbon debt” while for case 3 a net positive abatement of CO2 occurs which increases process revenue by 1.7 % and reduces ROI in 1 year.  相似文献   

9.
A previously unknown partitioned fluidized bed gasifier (PtFBG) has been developed for improving coal gasification performance. The basic concept of the PtFBG is a fluidized bed divided into two parts, a gasifier and a combustor, by a partitioned wall. Char is burnt in the combustor and the generated heat is supplied to the gasifier along with the bed materials. During that time, highly concentrated CO2 is inevitably generated in the combustor. Therefore, vigorous solid mixing is an essential precondition as well as minimizing horizontal gas mixing. In this study, gas and solid mixing behaviors were verified in a cold model three partitioned fluidized bed (3-PtFB). Glass beads with an average diameter of 150 μm and a particle density of 2500 kg/m3 were used as bed materials. For the gas mixing experiments, CO2 and N2 were introduced into the beds through each distributor. Then, outlet gas flow rates and concentrations were measured by gas flow meters and an IR gas analyzer respectively. The calculated gas exchange ratios ranged from 3% to 10% with varying gas flow rates. For the solid mixing experiments, 1000 μm polypropylene particles with a density of 883 kg/m3 were continuously fed into the reactor. Then, the polypropylene particles were distributed to the entire beds evenly. Solid mixing behaviors were very analogous to liquid mixing behaviors in a continuous stirred tank reactor (CSTR).  相似文献   

10.
In this paper, the influence on the system performance and greenhouse gas (GHG) emissions of different biomass pretreatment methods before gasification and Fischer–Tropsch (FT) crude production was evaluated. Entrained flow gasification has the benefit of producing a practically tar-free synthesis gas with nearly complete carbon conversion. This gasifier type requires a relatively dry fuel, with small particle size, at high pressure. The size can be acquired by milling, which is energy intensive and feeding is challenging. Torrefaction of biomass facilitates milling; it thus requires less electricity, however, the torrefaction process requires heat. Pyrolysis decomposes the biomass into gaseous, liquid, and solid parts, respectively. This further makes feeding easier, but comes with a greater heat demand than torrefaction. The impact of the different pretreatment methods on the overall energy system has been evaluated using process integration methodology. The results show that the excess heat from an FT process with a biomass input of 300 MWHHV can replace the bark boiler in a large chemical pulp and paper mill, producing 350,000 tonnes of bleached paperboard annually. With the preconditions given for this study, thermal pretreatment of biomass may be beneficial in terms of wood-to-FT crude efficiency, with efficiencies up to 68 %, assuming 40 % electrical efficiency. Pretreatment using pyrolysis performed the best in regards to GHG emissions, if CO2 from acid gas removal was vented, while milling, with an annual reduction of around 700,000 tonnes of CO2,eq, had the best results if the CO2 was captured and sequestrated.  相似文献   

11.
The anaerobic production of biohydrogen from different pretreated agroindustrial wastes, including rice bran (RB), de-oiled RB (DRB), sago starch (SS), and palm oil mill effluent (POME) via Clostridium saccharoperbutylacetonicum N1-4 was investigated in a batch culture system at 30 °C and a pH of 6.2. A yield of 7627, 6995, and 6,363 mL H2/L was obtained from H2SO4 (1 %)-treated DRB (10 %), enzymatically hydrolyzed DRB (10 %) and HCl (1 %)-treated DRB (10 %), respectively; however, untreated DRB (10 %) was able to produce only 3,286 mL H2/L. A strategic treatment of RB (10 %) with HCl (1 %) followed by enzymatic hydrolysis could produce 3,172 mL H2/L. An enzymatically hydrolyzed mixture of each POME and SS (5 %) produced 3,474 mL H2/L, and a remarkable enhancement of H2 production (7,020 mL H2/L) was achieved when the same mixture was subjected to XAD-4 resin treatment. In contrast, the enzymatically hydrolyzed SS (5 %) could produce only 4,628 mL H2/L. Conclusively, it can be stated that agricultural wastes have a potential as substrates for biohydrogen production and that pretreatment with C. saccharoperbutylacetonicum N1-4 can contribute positively to enhancing the production.  相似文献   

12.
C Laguerie  D Barreteau 《Sadhana》1987,10(1-2):49-67
This paper gives a review of several works performed in the Laboratory of Chemical Engineering of Toulouse (France) on the desulphurization of gas mixtures by chemical sorption of sulphur dioxide on cupric oxide deposited on porous alumina particles in a counterflow multistage fluidized bed reactor. The first part of the paper presents experimental results concerning effects of gas and solids flow rates, hold up of solids in the reactor, temperature and concentrations of SO2 and other gases (CO2, H2O and NO x ). Desulphurization yields exceeding 90% were obtained using a four-stage reactor and sulphur dioxide content could be reduced from 3000 ppm to less than 300 ppm with a small gas pressure drop. The presence of other components in the flue gas led to slight changes in the desulphurization yield. This could be corrected by a better choice of the operating conditions. The second part of the article presents the modelling of the reactor by taking into account the residence time distribution of the solid particles through it. Comparison between the model predictions and experimental results showed that the assumptions of Davidson and Harrison are sophisticated enough to describe reactor operation under steady state conditions. This paper is dedicated to Dr L K Doraiswamy on his sixtieth birthday.  相似文献   

13.
Continuous hydrogen production stability and robustness by dark fermentation were comprehensively studied at laboratory scale. Continuous bioreactors were operated at two different hydraulic retention times (HRT) of 6 and 10 h. The reactors were subjected to feeding shocks given by decreases in the HRT, and therefore the organic loading increases, during 6 and 24 h. Results indicated that the H2 productivity was significantly improved by the temporary organic shock loads, increasing the hydrogen production rate up to 40%, compared to the rate obtained at the steady-state condition. Besides, it was observed that after the shock load, the stability of the reactor (measured as the hydrogen production rate) was recovered attaining the values observed before the feeding shocks. The bioreactor operated at shorter HRT (6 h) showed better H2 productivity (17.3?±?1.1 L H2/L-d) in comparison with the other one operated at 10-h HRT (12.4?±?1.6 L H2/L-d).  相似文献   

14.
Catalytic activity of cobalt-doped bismuth vanadate [Bi4(V0.90Co0.10)2O11?δ ; BICOVOX] powder, prepared by a solution combustion synthesis and calcined at 800 °C (BICOVOX-800), for hydrogen production using low-temperature steam reforming of ethanol, has been reported in this paper. The effects of reaction temperature (250–400 °C) and feed concentration (H2O/EtOH = 2.5:1 and 23:1 mol ratio) on the steady-state ethanol conversion and selectivity of H2, CO2, CO, and CH4 have been investigated (up to 30 h). It is observed that with an increase in reaction temperature and H2O/EtOH mole ratio, H2 and CO2 selectivity increases and CO and CH4 selectivity decreases. The maximum H2 selectivity and ethanol conversion are observed to be 63 and 88%, respectively, for H2O/EtOH = 23:1 mol ratio at 400 °C. The XRD results show that the fresh BICOVOX-800 has pure γ-phase and is highly crystalline. The used catalyst (more than 150 h total) is detected to have less crystallinity and to partially decompose into Bi2O3 and BiVO4 phases.  相似文献   

15.
Cement and carbon emissions   总被引:1,自引:0,他引:1  
Because of its low cost, its ease of use and relative robustness to misuse, its versatility, and its local availability, concrete is by far the most widely used building material in the world today. Intrinsically, concrete has a very low energy and carbon footprint compared to most other materials. However, the volume of Portland cement required for concrete construction makes the cement industry a large emitter of CO2. The International Energy Agency recently proposed a global CO2 reduction plan. This plan has three main elements: long term CO2 targets, a sectorial approach based on the lowest cost to society, and technology roadmaps that demonstrate the means to achieve the CO2 reductions. For the cement industry, this plan calls for a reduction in CO2 emissions from 2 Gt in 2007 to 1.55 Gt in 2050, while over the same period cement production is projected to increase by about 50 %. The authors of the cement industry roadmap point out that the extrapolation of existing technologies (fuel efficiency, alternative fuels and biomass, and clinker substitution) will only take us half the way towards these goals. According to the roadmap, the industry will have to rely on costly and unproven carbon capture and storage technologies for the other half of the required reduction. This will result in significant additional costs for society. Most of the CO2 footprint of cement is due to the decarbonation of limestone during the clinkering process. Designing new clinkers that require less limestone is one means to significantly reduce the CO2 footprint of cement and concrete. A new class of clinkers described in this paper can reduce CO2 emissions by 20 to 30 % when compared to the manufacture of traditional PC Clinker.  相似文献   

16.
《Advanced Powder Technology》2020,31(7):2792-2805
Pressurized oxy-fuel combustion technology is considered as a perspective carbon capture technology in industrial process. A computational fluid dynamics (CFD) model based on Multi-Phase Particle-In-Cell (MP–PIC) method was developed to predict pressurized oxy-coal combustion process in fluidized bed. The heterogeneous and homogeneous combustion reactions of coal were considered in this model. The predicted results were validated the accuracy of this model with experimental data from a 15 kWth pressurized fluidized bed combustor in terms of the gas component and temperature characteristics. The characteristics of gas–solid flow and combustion under different pressure (0.1–2 MPa) and oxygen atmosphere were studied in this work. The predicted results show that the intensity of particle motion and the expansion degree in the fluidized bed was gradually decreased with an increase in pressure. A correlation was proposed based on the simulation results to maintain suitable fluidization conditions in pressurized circulating fluidized bed at different pressures. The temperature of particle phase region gradually increased with combustion pressure and inlet O2 concentration increased. In addition, the CO2 concentration in outlet increased while the emission of CO and NOx decreased as the combustion pressure increased.  相似文献   

17.
Membrane gas absorption technology is a promising alternative for CO2 removal from post-combustion coal-fired flue gases. This study examines an alternative which consists in absorbing carbon dioxide by ammonia aqueous solution in a membrane contactor to improve the capture processes and to intensify the gas–liquid transfer. Absorption measurements through a membrane contactor have been made. The influence of the material nature constituting the membrane and operating parameters on the capture efficiency has been studied. The potentialities of dense skin membrane contactors are discussed with regard to both increased CO2 mass transfer performances and mitigation of ammonia volatilization. The results have shown that it is possible to capture CO2 from ammonia through a membrane with capture efficiency greater than 90 %. The membrane limits ammonia losses but does not eliminate it. The experimental results are used to calculate an intensification factor of 5, which represents the comparison between the membrane overall absorption rate to that of the column.  相似文献   

18.
Global economic development intensifies the consumption of fossil fuels which results in increase of carbon dioxide (CO2) concentration in the atmosphere. The technologies for carbon capture and utilization to produce cleaner fuels are of great significance. However, phototechnology provides one perspective for economical CO2 conversion to cleaner fuels. In this study, CO2 conversion with H2 to selective fuels over Au/TiO2 nanostructures using environment friendly continuous monolith photoreactor has been investigated. Crystalline nanoparticles of anatase TiO2 were obtained in the Au-doped TiO2 samples. The Au deposited over TiO2 in metal state produced plasmonic resonance. CO2 was efficiently converted to CO as the main product over Au/TiO2 with a maximum yield rate of 4144 µmol g-catal.?1 h?1, 345 fold-higher than using un-doped TiO2 catalyst. The significantly enhanced photoactivity of Au/TiO2 catalyst was due to hindered charges recombination rate and Au metallic-interband transition. The photon energy in the UV range was high enough to excite the d-band electronic transition in the Au to produce CO, CH4, and C2H6. The quantum efficiency over Au/TiO2 catalyst for CO was considerably improved in the continuous monolith photoreactor. At higher space velocity, the yield rates of CO gradually reduced, but the initial rates of hydrocarbon yields increased. The stability of the recycled Au/TiO2 catalyst was sustained in cyclic runs. Thus, Au-doped TiO2 supported over monolith channels is promising for enhanced CO2 photoreduction to high energy products. This provides pathway that phototechnology to be explored further for cleaner and economical fuels production.  相似文献   

19.
The electrochemical carbon dioxide reduction reaction (CO2RR) presents a viable approach to recycle CO2 gas into low carbon fuels. Thus, the development of highly active catalysts at low overpotential is desired for this reaction. Herein, a high‐yield synthesis of unique star decahedron Cu nanoparticles (SD‐Cu NPs) electrocatalysts, displaying twin boundaries (TBs) and multiple stacking faults, which lead to low overpotentials for methane (CH4) and high efficiency for ethylene (C2H4) production, is reported. Particularly, SD‐Cu NPs show an onset potential for CH4 production lower by 0.149 V than commercial Cu NPs. More impressively, SD‐Cu NPs demonstrate a faradaic efficiency of 52.43% ± 2.72% for C2H4 production at ?0.993 ± 0.0129 V. The results demonstrate that the surface stacking faults and twin defects increase CO binding energy, leading to the enhanced CO2RR performance on SD‐Cu NPs.  相似文献   

20.
A mathematical model has been developed to predict performance of a continuous entrained-bed and bubbling fluidized-bed hot gas desulfurization system in IGCC. The model combines the particle residence time with the kinetic rate in each reactor. The model has been applied to the KIER’s laboratory scale fluidized bed process. The present model provided a reasonable fit in predicting experimental results that the outlet concentration of H2S from the desulfurizer and SO2 from the regenerator increased nearly proportionally to the inlet concentration of H2S to the desulfurizer. The model also could predict well the outlet concentration of O2 from the regenerator to decrease as the inlet concentration of H2S to the desulfurizer increased. The present model predicted with reasonable accuracy mean diameter of bed particles and sulfur content of particles in desulfurizer and regenerator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号