首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A widespread mechanism of slow excitation throughout the nervous system involves overlapping changes in nonselective ion conductance and K+ conductance. We used whole cell patch-clamp recording to characterize such a nonselective conductance induced by neurotensin (NT) and other neurotransmitters in immunocytochemically identified dopaminergic neurons cultured from the rat ventral tegmental area (VTA). 2. The NT-induced inward current consisted of an initial peak and later "hump." The response was blocked reversibly by the nonpeptide NT-receptor antagonist SR48692, suggesting that it resulted from activation of NT receptors. 3. The channel was almost equally permeable to Na+ and K+, as determined from the reversal potential shift upon switching from Na+- to K(+)-containing external solution. The permeability of Cs+ was similar to that of Na+, as determined from the zero-current equation and average reversal potential in the 75 mM Na+ solution. Cl- was not significantly permeable. 4. In Ca(2+)-free external solution, the NT-induced current showed a fourfold increase in amplitude, and in high Mg2+ (20 mM) external solution, the NT-induced current showed an 80% decrease in amplitude, suggesting that external Ca2+ and Mg2+ could block the nonselective conductance. 5. The NT response was unaffected by loading the neurons with either the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid or with 1 mM ca2+. The nonselective conductance was therefore not Ca2+ activated. 6. Loading the neurons with cyclic GMP or cyclic AMP (each with the phosphodiesterase inhibitor isobutyl-methylxanthine) did not affect the NT response. The NT-induced nonselective conductance was therefore not cyclic nucleotide-activated. 7. The latency of the NT response was long (> or = 185 ms, average 406 ms, 30 degrees C), indicating that NT did not induce the conductance through ligand-gated channels. Thus, NT activated a slow nonselective cation conductance. 8. Neurokinin B, a metabotropic glutamate agonist, and muscarine elicited responses similar to the NT response. The NT response could be elicited after desensitizing the responses to these other neurotransmitters, indicating receptor specificity in the activation of the nonselective conductance.  相似文献   

2.
The patch-clamp technique was used to characterise the ion channels in cells located in the mid region of mouse jejunal crypts. Six different channels were seen. A large outwardly rectified K+ channel (BK) (conductance, g at 0 mV = 92 +/- 6 pS), which was highly selective for K+ [PK+ (1) > PRb+ (0.6) > PCs+ (0.09) approximately PNa+ (0.07) > PLi+ (0.04)], had a low, voltage-independent open probability (Po) in the on-cell (O/C) configuration and appeared in 66% of the patches. In inside-out (I/O) patches, this channel had a linear current/voltage (I/V) relationship (g = 132 +/- 3 pS), Po was voltage dependent and it was blocked by cytoplasmic Ba2+ (5 mmol/l). An intermediate K+ channel (IK) which was present in 49% of O/C patches, had a linear I/V (g = 38 +/- 3 pS), ran-down in O/C patches, and was not seen in I/O patches. A number of smaller channels (SC) with conductances ranging from 5 to 20 pS were seen in 16% of O/C patches. Also present in the basolateral membrane were a Cl- channel (ICOR) and a nonselective cation channel (NSCC). These channels were only seen in I/O patches. ICOR had an outwardly rectified conductance (g at 0 mV = 36 +/- 2 pS), its Po was independent of voltage and unaffected by variations in cytoplasmic Ca2+ (100 nmol/l to 1 mmol/l) or ATP (0-1 mmol/l). The NSCC had a linear conductance (20 +/- 1 pS), its Po increased with depolarisation and elevation of cytoplasmic [Ca2+] (> or = 10 micromol/l), but was reduced by cytoplasmic ATP. None of the basolateral channels described here were activated by cAMP-dependent secretagogues, although a Cl- conductance was activated. This cAMP-dependent Cl- conductance was distinct from the basolateral Cl- channel and thus is most likely located in the apical membrane.  相似文献   

3.
Nonselective cation channels have been identified and linked to important cell functions in rat hepatocytes. In this study, we characterized inward rectifying nonselective cation channels in detail by the patch clamp technique in human HepG2 cells. Channel properties were studied with high resistance borosilicate pipettes in cell-attached and inside-out configurations. With Ringer's solution and KCl as pipette solutions, the conductances were 19.7 +/- 2.1 and 22.2 +/- 0.0 picosiemens (pS), and reversal potentials were 30.9 +/- 3.5 and 31.3 +/- 4.6 mV, respectively. The channel was permeable to Ba2+, and the sequence of permeability ratios was Na+ > K+ > Cs+ > Ba2+. In the cell-attached configuration, the channel had a higher opening probability at depolarizing potential than at hyperpolarizing. In the inside-out patches with symmetric Ringer's solution, the current voltage curve was linear with conductance of 19.8 +/- 0.9 pS. Reversal potential shifted from -0.2 +/- 1.0 mV to 23.2 +/- 1.0 mV when the bath solution was replaced by dilute Ringer's solution. In the inside-out configuration, the gating was Ca(2+)-dependent, and the opening probability increased with increasing intracellular calcium concentration ([Ca2+]i). An outward rectifying channel appeared when [Ca2+]i was less than 1 mumol/L. The nonselective channel was reversibly blocked by 10 mumol/L internal flufenamic acid. We conclude that Ca(2+)- and voltage-dependent nonselective cation channels are present in human HepG2 cells. The channels might be involved in the regulation of Ca2+ influx and are associated with activation of other ion channels.  相似文献   

4.
The incretin hormones, glucagon-like peptide 1 and pituitary adenylyl cyclase-activating polypeptide, are proposed to activate a maitotoxin (MTX)-sensitive, Ca2+-dependent nonselective cation current in pancreatic beta-cells and insulinoma cells. This MTX-sensitive current is present in human beta-cells as well as in mouse and rat beta-cells, and is accompanied by a rise in cytosolic Ca2+ in voltage-clamped cells in which the activation of voltage-dependent Ca2+ channels is prevented. Activation of the nonselective cation current is inhibited by reduction of disulfide bonds with intracellular, but not extracellular, dithiothreitol, and is also abolished by intracellular dialysis with trypsin. The nonselective cation channels that carry this current have a conductance of about 30 pS, with Na+ as the major extracellular cation. We estimate that these cation channels are expressed on beta-cells at a density similar to that of ATP-sensitive potassium channels (K(ATP) channels) and exhibit spontaneous activity at basal glucose concentrations. We propose that this spontaneous cation channel activity constitutes at least part of the depolarizing background conductance that permits changes in the activity of K(ATP) channels to regulate the resting potential of beta-cells.  相似文献   

5.
The regulation of the activity of the approximately 30 pS nonselective cation channel (NSC channel) was studied by the patch-clamp technique in inside-out patches obtained from rat brown-fat cells. NSC channel activity was induced by excision; reduced redox state induced by dithiothreitol accelerated the kinetics in the excised state. The NSC channels were inhibited by the fenamates flufenamic acid and mefenamic acid but not by NS-1619 or SKF-96365. The channels were inhibited by purine nucleotides but not by polyamines. No evidence for protein kinase C, CaM kinase or protein kinase A activation of the NSC channel was obtained. NSC-channel activity was stimulated in a concentration-dependent manner by Ca2+ but the EC50 was very high (0.81 mM), in comparison to expected cytosolic Ca2+ levels. In the presence of ATP, even higher Ca2+ levels were necessary for comparable NSC-channel activation. The increase in Po was not associated with an increase in open-time constants. We conclude that although high Ca2+ levels can experimentally activate the NSC channel, a further mediatory step must probably be postulated in order to link alpha1-adrenergic stimulation to NSC-channel activation.  相似文献   

6.
7.
Free-running circadian rhythms in melatonin secretion persist in dissociated chick pineal cells. Calcium and cyclic AMP interact at several levels in the regulation of melatonin biosynthesis and secretion. Extracellular Ca2+ is required for optimal stimulation of melatonin secretion by cAMP analogues and protagonists. Increased Ca2+ influx during the circadian night is thought to play a role in the circadian clock regulation of melatonin secretion. We have recently described a nonselective cationic channel, ILOT, in chick pineal cells that is regulated by the intrinsic circadian oscillator. Active ILOT channels are detected only during the nighttime and may explain the nocturnal increase in Ca2+ influx. The mechanism by which the activity of ILOT is regulated by the circadian oscillator is not known. In the present study, the effect of the translational inhibitor anisomycin (10(-6) M) on the nighttime activity of ILOT channels was examined. The results show that protein synthesis is required for the detection of ILOT channel activity during the nighttime in cells maintained on light-dark cycles or constant dark conditions.  相似文献   

8.
Elevation of intracellular cAMP levels in Necturus gallbladder epithelium (NGB) induces an apical membrane Cl- conductance (GaCl). Its characteristics (i.e., magnitude, anion selectivity, and block) were studied with intracellular microelectrode techniques. Under control conditions, the apical membrane conductance (Ga) was 0.17 mS.cm-2, primarily ascribable to GaK. With elevation of cell cAMP to maximum levels, Ga increased to 6.7 mS.cm-2 and became anion selective, with the permeability sequence SCN- > NO3- > I- > Br- > Cl- > SO4(2-) approximately gluconate approximately cyclamate. GaCl was not affected by the putative Cl- channel blockers Cu2+, DIDS, DNDS, DPC, furosemide, IAA-94, MK-196, NPPB, SITS, verapamil, and glibenclamide. To characterize the cAMP-activated Cl- channels, patch-clamp studies were conducted on the apical membrane of enzyme-treated gallbladders or on dissociated cells from tissues exposed to both theophylline and forskolin. Two kinds of Cl- channels were found. With approximately 100 mM Cl- in both bath and pipette, the most frequent channel had a linear current-voltage relationship with a slope conductance of approximately 10 pS. The less frequent channel was outward rectifying with slope conductances of approximately 10 and 20 pS at -40 and 40 mV, respectively. The Cl- channels colocalized with apical maxi-K+ channels in 70% of the patches. The open probability (Po) of both kinds of Cl- channels was variable from patch to patch (0.3 on average) and insensitive to [Ca2+], membrane voltage, and pH. The channel density (approximately 0.3/patch) was one to two orders of magnitude less than that required to account for GaCl. However, addition of 250 U/ml protein kinase A plus 1 mM ATP to the cytosolic side of excised patches increased the density of the linear 10-pS Cl- channels more than 10-fold to four per patch and the mean Po to 0.5, close to expectations from GaCl. The permeability sequence and blocker insensitivity of the PKA-activated channels were identical to those of the apical membrane. These data strongly suggest that 10-pS Cl- channels are responsible for the cAMP-induced increase in apical membrane conductance of NGB epithelium.  相似文献   

9.
Extracellular concentrations of Ca2+ change rapidly and transiently in the brain during excitatory synaptic activity. To test whether such changes in Ca2+ can play a signaling role we examined the effects of rapidly lowering Ca2+ on the excitability of acutely isolated CA1 and cultured hippocampal neurons. Reducing Ca2+ excited and depolarized neurons by activating a previously undescribed nonselective cation channel. This channel had a single-channel conductance of 36 pS, and its frequency of opening was inversely proportional to the concentration of Ca2+. The inhibition of gating of this channel was sensitive to ionic strength but independent of membrane potential. The ability of this channel to sense Ca2+ provides a novel mechanism whereby neurons can respond to alterations in the extracellular concentration of this key signaling ion.  相似文献   

10.
11.
The aim of this study was to elucidate electrophysiologically the actions of dopamine and SKF38393, a D1-like dopamine receptor agonist, on the membrane excitability of striatal large aspiny neurons (cholinergic interneurons). Whole-cell and perforated patch-clamp recordings were made of striatal cholinergic neurons in rat brain slice preparations. Bath application of dopamine (1-100 microM) evoked a depolarization/inward current with an increase, a decrease, or no change in membrane conductance in a dose-dependent manner. This effect was antagonized by SCH23390, a D1-like dopamine receptor antagonist. The current-voltage relationships of the dopamine-induced current determined in 23 cells suggested two conductances. In 10 cells the current reversed at -94 mV, approximately equal to the K+ equilibrium potential (EK); in three cells the I-V curves remained parallel, whereas in 10 cells the current reversed at -42 mV, which suggested an involvement of a cation permeable channel. Change in external K+ concentration shifted the reversal potential as expected for Ek in low Na+ solution. The current observed in 2 mM Ba2+-containing solution reversed at -28 mV. These actions of dopamine were mimicked by application of SKF38393 (1-50 microM) or forskolin (10 microM), an adenylyl cyclase activator, and were blocked by SCH23390 (10 microM) or SQ22536 (300 microM), an inhibitor of adenylyl cyclase. These data indicate, first, that dopamine depolarizes the striatal large aspiny neurons by a D1-mediated suppression of resting K+ conductance and an opening of a nonselective cation channel and, second, that both mechanisms are mediated by an adenylyl cyclase-dependent pathway.  相似文献   

12.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is localized to pancreatic nerve terminals and stimulates insulin secretion. The insulinotropic effect of PACAP38 in insulin-producing HIT-T15 cells is accompanied by increases in cellular cAMP and cytoplasmic Ca2+ ([Ca2+]cyt). As also intracellular Na+ is important for insulin secretion after glucose and other cAMP forming peptides, we examined the Na+ dependence of the insulinotropic effect of PACAP38 in HIT-T15 cells. We found that PACAP38 (100 nM)-induced insulin secretion was diminished by approximately 50% by removal of extracellular Na+ (replaced by equimolar N-methyl-D-glucamine). In contrast, removal of Na+ did not diminish the formation of cellular cAMP (measured by radioimmunoassay) or the increase in [Ca2+]cyt (measured in FURA-2AM-loaded cell suspensions) induced by PACAP38. Furthermore, PACAP-38 increased the cytoplasmic Na+ ([Na+]cyt) in single HIT-T15 cells as measured by the fluorophore sodium-binding benzofran isophthalate. This increase was reduced by removal of extracellular Na+ and by inhibition of protein kinase A by H-89. We conclude that the insulinotropic action of PACAP38 is Na+-dependent. We propose that PACAP38 opens plasma membrane Na+ channels by an action partially mediated by cAMP and protein kinase A, and the subsequent raise in [Na+]cyt elicits insulin secretion by an as yet unsolved mechanism.  相似文献   

13.
14.
Frusemide can be used as an antiasthma drug and appears to inhibit the release (conditioned by activation of Cl- channels) of mast cell proinflammatory mediators. We studied the cause of the effects of frusemide, checking its action on Cl- channels. The patch-clamp technique was used to study single-channel currents, and differences in electrical potential of the cellular membrane of rat peritoneal mast cells were measured. In inside-out configuration, outwardly-rectifying Cl- channels were identified whose conductance was 2.4/1.7 pS at positive and negative voltages. In cell-attached configuration, the open probability (Po) of the channel increased with depolarization or with the presence of cyclic adenosine monophosphate (cAMP) in the incubation medium. Po increased with a rise of cytoplasmic free calcium concentration [Ca2+] and was inhibited by 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) and by 4-4'-diisothiocyanatoostilbene-2-2'-disulphonic acid (DIDS). These channels seem to be the main cause of mast cell Cl- conductance. Frusemide (10(-5) and 10(-3) M) did not affect Cl- channel activity when using excised patches. In cell-attached configuration experiments, the presence of frusemide (from 10(-5) to 10(-3) M) in the cell incubation medium, increasingly reduced Po (median inhibitory concentration (IC50) = 4.3 x 10(-7) M). In similar conditions, bumetanide also inhibited Po (IC50 = 5.7 x 10(-3) M). The results of this study suggest that frusemide can inhibit mast cell Cl- channels only via an indirect mechanisms, which probably involves an inhibition of a Na(+)-K(+)-2Cl- symport.  相似文献   

15.
16.
Membrane vesicles derived from external taste epithelia of channel catfish (Ictalurus punctatus) were incorporated into lipid bilayers on the tips of patch pipettes. Consistent with previous experiments (Teeter, J. H., J. G. Brand, and T. Kumazawa. 1990. Biophys. J. 58:253-259), micromolar (0.5-200 microM) concentrations of L-arginine (L-Arg), a potent taste stimulus for catfish, activated a nonselective cation conductance in some bilayers, which was antagonized by D-Arg. Two classes of L-Arg-gated receptor/channels were observed in reconstituted taste epithelial membranes: one with a unitary conductance of 40-60 pS, and the other with a conductance of 75-100 pS. A separate class of nonselective cation channels, with a conductance of 50-65 pS, was activated by high concentrations of L-proline (L-Pro) (0.1-3 mM), which is the range necessary to elicit neural responses in catfish taste fibers. The L-Pro-activated channels were not affected by either L- or D-Arg, but were blocked by millimolar concentrations of D-Pro. Conversely, neither L- nor D-Pro altered the activity of either class of L-Arg-activated channels, which were blocked by micromolar concentrations of D-Arg. These results are consistent with biochemical, neurophysiological, and behavioral studies indicating that taste responses of channel catfish to L-Arg are mediated by high-affinity receptors that are part of or closely coupled to nonselective cation channels directly gated by low concentrations of L-Arg, while responses to L-Pro are mediated by distinct, low-affinity receptors also associated with nonselective cation channels.  相似文献   

17.
1. K+ and Cl- conductances and their putative regulation have been characterized in the rat colonic epithelium by Ussing-chamber experiments, whole-cell and single-channel patch-clamp recordings. 2. The apical Cl- conductance is under the control of intracellular cAMP. An increase in the concentration of this second messenger induces transepithelial Cl- secretion due to the activation of an apical 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB)- and glibenclamide-sensitive Cl- conductance. 3. In addition to the apical Cl- conductance, the basolateral membrane is equipped with Cl- channels. They are stimulated by cell swelling and play a role in cell volume regulation and transepithelial Cl- absorption. 4. The basolateral K+ conductance is under the dominant control of intracellular Ca2+. An increase in the cytosolic Ca2+ concentration leads to the opening of basolateral K+ channels, which causes a hyperpolarization of the cell membrane, indirectly supporting Cl- secretion owing to an increase in the driving force for Cl- exit. The predominant effect of cAMP on the basolateral K+ conductance is an inhibitory one, probably due to a decrease in the intracellular Ca2+ concentration. 5. The apical K+ conductance, which is involved in transepithelial K+ secretion, is stimulated by an increase in the intracellular Ca2+ concentration. 6. The differential regulation of apical and basolateral ion conductances in the epithelium of the rat distal colon provides an interesting example for the mechanisms underlying vectorial transport of ions across polarized cells.  相似文献   

18.
Maitotoxin (MTX) may exert its toxic effect by activating ion conductances and has been shown to elicit a fertilization-like response in Xenopus laevis oocytes. In the present study we investigated the electrophysiological response of stage V-VI Xenopus oocytes to MTX using the two-microelectrode voltage-clamp technique. Membrane voltage (Vm) measurements demonstrated that MTX (50 pM to 1 nM) depolarized the oocytes from -49+/-7 to -14+/-1 mV. Subsequent replacement of bath Na+ by the impermeant cation NMDG (N-methyl-d-glucamine) shifted Vm from -14+/-1 to -53+/-5 mV (n=29). This indicates that MTX activates a cation conductance. Indeed, current measurements at a holding potential of -60 or -100 mV showed that within 10 s of MTX application an inward current component developed which was largely abolished by extracellular Na+ removal. After a 1-min application of 1 nM MTX the NMDG-sensitive current increased more than 100-fold from 0.14+/-0.03 microA to a peak value of 21+/-3 microA (n=11). The effect of MTX was concentration dependent with an EC50 of about 250 pM but only slowly reversible. Ion substitution experiments indicated that the stimulated conductance was nonselective for monovalent cations with a slight preference for NH4+ (2.1) > K+ (1.5) > Na+ (1.0) > Li+ (0.7). Regarding divalent cations, a complex biphasic response to extracellular Na+ replacement by Ca2+ was observed, which suggests that the stimulated channels may have a small Ca2+ permeability but that exposure to high extracellular Ca2+ enhances recovery from MTX stimulation. No significant conductance for Mn2+ was observed. Application of 1 mM benzamil, 1 mM amiloride, or 100 microM 1-(beta-[3-(4-Methoxyphenyl)-propoxy]-4-methoxyphenethyl)-1H-imidazol e hydrochloride (SK&F 96365) reduced the MTX-stimulated inward current by 81%, 62%, or 65%, respectively. Gd3+ had an inhibitory effect of 29% and 38% at concentrations of 10 microM or 100 microM, respectively. Flufenamic acid, niflumic acid, (RS)-(3,4-dihydro-6, 7-dimethoxyisoquinoline-1-gamma1)-2-phenyl-N,N-di-[2-(2,3, 4-trimethoxyphenyl)-ethyl]-acetamide (LOE908), and 3', 5'-dichlorodiphenylamine-2-carboxylic acid (DCDPC), known blockers of other nonselective cation channels, had no significant effect. We conclude that MTX activates a nonselective cation conductance in Xenopus oocytes. The underlying channels may be involved in changes in Vm that occur during the early stages of fertilization.  相似文献   

19.
The nucleotide regulation of a calcium-activated nonselective cation (Ca-NS+) channel has been investigated in the rat insulinoma cell line CRI-G1. The activity of the channel is reduced by both AMP and ADP (1-100 microM) in a concentration-dependent manner, with AMP being more potent than ADP. At lower concentrations (0.1-5 microM), both ADP and AMP activate the channel in some patches. Examination of the nucleotide specificity of channel inhibition indicates a high selectivity for AMP over the other nucleotides tested with a rank order of potency of AMP > UMP > CMP > or = GMP. Cyclic nucleotides also modulate channel activity in a complex, concentration-dependent way. Cyclic AMP exhibits a dual effect, predominantly increasing channel activity at low concentrations (0.1-10 microM) and reducing it at higher concentrations (100 microM and 1 mM). Specificity studies indicate that the cyclic nucleotide site mediating inhibition of channel activity exhibits a strong preference for cyclic AMP over cyclic GMP, with cyclic UMP being almost equipotent with cyclic AMP. Cyclic IMP and cyclic CMP are not active at this site. The cyclic nucleotide site mediating activation of the channel shows much less nucleotide specificity than the inhibitory site, with cyclic AMP, cyclic GMP and cyclic IMP being almost equally active.  相似文献   

20.
Effects of membrane potential, intracellular Ca2+ and adenine nucleotides on glucose-sensitive channels from X organ (XO) neurons of the crayfish were studied in excised inside-out patches. Glucose- sensitive channels were selective to K+ ions; the unitary conductance was 112 pS in symmetrical K+, and the K+ permeability (PK) was 1.3 x 10(-13) cm x s(-1). An inward rectification was observed when intracellular K+ was reduced. Using a quasi-physiological K+ gradient, a non-linear K+ current/voltage relationship was found showing an outward rectification and a slope conductance of 51 pS. The open-state probability (Po) increased with membrane depolarization as a result of an enhancement of the mean open time and a shortening of the longer period of closures. In quasi-physio- logical K+ concentrations, the channel was activated from a threshold of about -60 mV, and the activation midpoint was -2 mV. Po decreased noticeably at 50 microM internal adenosine 5'-triphosphate (ATP), and single-channel activity was totally abolished at 1 mM ATP. Hill analysis shows that this inhibition was the result of simultaneous binding of two ATP molecules to the channel, and the half-blocking concentration of ATP was 174 microM. Internal application of 5'-adenylylimidodiphosphate (AMP-PNP) as well as glibenclamide also decreased Po. By contrast, the application of internal ADP (0.1 to 2 mM) activated this channel. An optimal range of internal free Ca2+ ions (0.1 to 10 microM) was required for the activation of this channel. The glucose--sensitive K+ channel of XO neurons could be considered as a subtype of ATP-sensitive K+ channel, contributing substantially to macroscopic outward current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号