共查询到16条相似文献,搜索用时 109 毫秒
1.
尽管蚁群优化算法在优化计算中有大量应用,但在大规模优化问题中蚁群算法仍存在搜索时间过长、易于停滞现象等等应用瓶颈。基于这些原因,根据经济学组织交易成本理论,文中提出一种新的通过聚类来降低优化问题规模的蚁群优化算法:基于聚类的蚂蚁优化算法,并从理论上表明比其他蚁群优化算法提高了收敛速度并延迟停滞现象。 相似文献
2.
3.
4.
尽管蚁群优化算法在优化计算中有大量应用,但在大规模优化问题中蚁群算法仍存在搜索时间过长、易于停滞现象等等应用瓶颈.基于这些原因,根据经济学组织交易成本理论,文中提出一种新的通过聚类来降低优化问题规模的蚁群优化算法:基于聚类的蚂蚁优化算法,并从理论上表明比其他蚁群优化算法提高了收敛速度并延迟停滞现象. 相似文献
5.
一种自适应的蚂蚁聚类算法 总被引:33,自引:0,他引:33
受蚂蚁分巢居住行为的启发,提出一种人工蚂蚁运动(ant movement,简称AM)模型和在此模型上的一个自适应的蚂蚁聚类算法(adaptive ant clustering,简称AAC).将人工蚂蚁看成一个行为简单的Agent,代表一个数据对象.在AM中,人工蚂蚁有睡眠和活跃两种状态.在AAC算法中,定义了一个适应度函数用来衡量蚂蚁与其邻居的相似程度.人工蚂蚁通过其适应度和激活概率函数来决定处于活跃态或者睡眠态.整个蚂蚁群体在移动中动态地、自适应地、自组织地形成多个独立的子群体,使不同类别的蚂蚁之间相互 相似文献
6.
7.
蚁群算法作为一种新型的优化方法,具有很强的适应性和鲁棒性。基于蚁群算法的聚类方法已经在当前数据挖掘研究中得到应用。文章提出了一个新颖策略来解决无人监督的数据聚类问题,利用信息素控制蚂蚁随机移动提高算法效率,采用运动速度各异的多个蚂蚁独立并行进行聚类来提高聚类质量。实验结果表明该方法是有效的。 相似文献
8.
蚂蚁等群居式昆虫具有分布式、自组织、基于信息素间接通信(pheromone)等群体协作能力,模拟其智能行为的蚁群算法解决了许多复杂的问题并在并在数据聚类分析领域取得成效。本文首先介绍了基于蚂蚁的聚类算法的基本理论,讨论了参数σ对邻域平均相似度的影响并做了实验分析比较,然后提出利用离散点对算法进行改进,通过对离散点的检测算法能够对蚂蚁行为进行控制,使蚂蚁快速地决定下一个负载节点,从而有效地缩短聚类分折的执行时间。实验表明改进后的蚂蚁聚类算法具有较好的聚类特性,其收敛性也得到了有效改善。 相似文献
9.
针对于蚁群聚类算法在搬运数据项过程中随机选择移动位置时,由于无效移动导致的算法收敛速度缓慢等缺陷,论文提出了一种基于相似度的蚁群聚类算法.通过设计相似度矩阵,基于相似移动机制将蚂蚁随机移动方式优化为按照相似度矩阵规则实施目的性的关联.实验选取Iis、Wine、Haberman和Balance-scale四种经典数据集,相较于现有的LF算法及GACC算法,结果表明在蚂蚁空载率都为90%的条件下,论文提出的SMACC算法的迭代次数明显降低,均体现出较优的聚类速率. 相似文献
10.
蚁群算法是优化领域中新出现的一种仿生进化算法,广泛应用于求解复杂组合优化问题,并已在通信网络、机器人等许多应用领域得以具体应用。聚类问题作为一种无监督的学习,能根据数据间的相似程度自动地进行分类。基于蚁群算法的聚类算法已经在当前的数据挖掘研究中得到应用。文中针对早期蚁群聚类算法的缺点,提出一种改进的启发式蚁群聚类算法(IHAC),将蚁群在多维空间中移动的启发式知识存储在称之为"记忆银行"的设备当中,来指导蚁群后边的移动行为,降低蚁群移动的随意性,避免产生未分配的数据对象。并用一些数据做了一些实验,结果证明改进的蚁群聚类算法在误分类错误率和运行时间上优于早期的蚁群聚类算法。 相似文献
11.
12.
基于改进的启发式蚁群算法的聚类问题的研究 总被引:1,自引:0,他引:1
蚁群算法是优化领域中新出现的一种仿生进化算法,广泛应用于求解复杂组合优化问题,并已在通信网络、机器人等许多应用领域得以具体应用。聚类问题作为一种无监督的学习,能根据数据间的相似程度自动地进行分类。基于蚁群算法的聚类算法已经在当前的数据挖掘研究中得到应用。文中针对早期蚁群聚类算法的缺点,提出一种改进的启发式蚁群聚类算法(IHAC),将蚁群在多维空间中移动的启发式知识存储在称之为“记忆银行”的设备当中,来指导蚁群后边的移动行为,降低蚁群移动的随意性,避免产生未分配的数据对象。并用一些数据做了一些实验,结果证明改进的蚁群聚类算法在误分类错误率和运行时间上优于早期的蚁群聚类算法。 相似文献
13.
提出了一种基于方向相似性度量的蚁群聚类算法。首先针对方向性数据的特点将方向性度量引入蚁群聚类算法作为相似性度量;其次使用两个反应阈值决定人工蚂蚁的聚类动作,避免了LF算法中由于计算平均相似度而出现的不足。实验结果表明,该算法能有效地对方向性数据聚类,具有一定的实际应用价值。 相似文献
14.
由于单类蚁群算法分割易造成欠分割或者过分割,提出基于类间蚂蚁竞争模型的显著图像分割算法。首先根据线性迭代聚类超像素分割算法(simple linear iterative clustering,SLIC)对图像进行预处理,在保留原始图像信息的前提下,将图像分割成各个区域,这样不仅可以提高分割精度得到理想的分割结果,还可以缩短运算时间。同时为了弥补单类蚂蚁分割易造成的欠分割或者过分割,引入两类蚂蚁,每一类蚂蚁寻找各自目标(前景/背景),不同类别的蚂蚁之间进行信息互补与竞争,使得分割结果更加准确。根据种群竞争思想,设定两类蚂蚁,每类蚂蚁设定食物目标不同,从而相互竞争,“优胜劣汰”,最终找到各自的食物,根据两类蚂蚁分泌的信息素竞争得到最终的结果。实验结果表明,该算法运行快速,分割结果更加精确。 相似文献
15.
16.
针对无线传感器网络中传感器节点随机分布造成能耗不均和“热区”等问题,提出了一种改进的基于蚁群算法的非均匀分簇路由协议。该协议也采用“轮”方式运行,每轮簇首选举开始阶段,根据节点剩余能量、节点密度,结合节点到Sink节点的距离来构造不均匀的竞选半径,每个节点根据竞选半径范围内邻居节点计算剩余能量比及距离偏差平均值,从而计算出其簇首竞争等待时间,采用时间等候簇首竞选机制来选举出簇首,平衡簇内的通信能耗;数据传输阶段,考虑剩余能量、通信能耗、链路质量、传输时延等因素,采用改进的蚁群算法构造最优传输路径,数据传输的同时更新信息素,从而达到自适应、动态优化地建立和维护传输路径。仿真结果表明,该路由协议能有效节约能量和均衡能耗,延长网络生命周期,改善链路质量,减少传输时延。 相似文献