首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complexing capacity of some drinking waters for aluminium(III) and copper(II) is determined by a ligand titration with metal ions based on the use of complexing resins. The resins used in the titration are the iminodiacetic resin Chelex 100, the carboxylic resin Amberlite CG50 and the anionic exchange resin AG1X8. They allow the detection of ligands forming complexes of different stability with the metal ions used for the titration, since they have different sorbing properties. After equilibration with the resin, the concentration of the free metal ion in solution is evaluated from the concentration of sorbed metal ion and from the quantity K*, which is the ratio of the concentration of the metal ion sorbed on the resin to the free metal ion in solution. It strongly depends on the conditions, but it can be evaluated, at the considered conditions, from the sorption equilibria of the metal ion on the resin. The concentration of the ligands in solution and the conditional stability constant are obtained from the Ruzik linearization procedure. Very strong ligands of copper(II) and aluminium(III) were detected in a tap water sample at concentrations ranging from 10−7 to 10−6 mol kg−1, and forming complexes having conditional complexation constants KcI=2.3×1017 (pH=6.77) and 4.5×1016 (pH=6.24), respectively, for copper(II) and aluminium(III). Weaker ligands were detected using the less strongly sorbing resins Amberlite CG50 and AG1X8, but at a concentration equal to that of the strong ligands. This was ascribed to the presence of competing metals in solution, not sorbed by the weak resins. Two other drinking waters had completely different complexing properties both towards copper(II) and aluminium(III), containing much weaker ligands.  相似文献   

2.
Impact of dissolved oxygen concentration (D.O.) on toxicity of cadmium to mummichogs in a freshwater medium and histological changes associated with exposure were determined. Levels of mortality were related to duration of exposure, cadmium concentration, and levels of dissolved oxygen. Median tolerance concentrations, at 96h, ranged upward from 1.3 to about 3.0 mg Cd 1−1 at 2.3 and 8.5 mg DO 1−1, respectively. Statistical analyses of mortality data showed factors examined were interdependent and that Cd × DO and Cd × time interactions were significant (P < 0.01). No histopathology was evident at 3 mg Cd 1−1, although histopathology was evident in gills from fish exposed to 28 mg Cd 1−1 for 6 1/2 h.

Responses of mummichogs to cadmium in freshwater are compared with results of a previous study involving exposure of the species to cadmium in seawater and with responses of freshwater fishes subjected to various heavy metals. Differences and similarities in patterns of response are discussed in terms of water balance.  相似文献   


3.
The effectiveness of Cu2+, Cd2+ and Zn2+ removal from solution by alum coagulation was measured with fulvic acid present and absent. A factorial experimental design and analysis of variance were used to determine the effect on metal ion removal of the individual variables pH, metal ion concentration, alum concentration and fulvic acid concentration and their combinations. The variable levels model water treatment plant conditions. Metal ion losses up to 96% for Cu2+. 59% for Cd2+ and 82% for Znz+ were measured in the presence of fulvic acid. In its absence the maximum metal ion losses observed were 93%, 14% and 53% for Cu2+, Cd2+ and Zn2+ respectively. Fulvic acid enhances metal ion removal under most experimental conditions. The practical implication of the results is that strong complexes between natural water organic matter and metal ions enhance their removal by the alum coagulation process.  相似文献   

4.
Chlorinated hydrocarbons are widely used in chemical industries as solvents and intermediates for pesticides and dyes manufacture. Their presence was documented in rivers, groundwaters and seawaters.

In this work, the oxidation of 1,2-dichlorobenzene in aqueous solutions by means of Fe(III) homogeneous photocatalysis under UV lamp and sunlight irradiations is studied. The results show that the best working conditions are found for pH=3.0 and initial [Fe(III)] concentration equal to 1.0×10−4 mol L−1 although the investigated system can be utilized even at pH close to 4.0 but with slower abatement kinetics.

Some dicholoroderivatives, such as 2,3-dichlorophenol, 3,4-dichlorophenol and 2-chlorophenol, are identified as oxidation intermediates. The values of the kinetic constant for the photochemical reoxidation of Fe(II) to Fe(III) are evaluated by a mathematical model in the range 1.58–3.78 L mol−1 s−1 and 0.69–0.78 L mol−1 s−1 for the systems irradiated by UV lamp and sunlight, respectively.  相似文献   


5.
Batch copper ion binding and exchange properties of peat   总被引:5,自引:0,他引:5  
Cupric ion fixation by raw peat is likely involved in both cation exchange with H+, Ca2+, Mg2+ and adsorption-complexation, i.e. fixation of the same equivalent of copper ions and anions (NO3) without any ion release. The importance of both reactions depends largely on initial copper concentration, peat type and pH. Isotherms of copper (initial concentration ranging between 1 and 20 mM) fixation on two types of peat (eutrophic and oligotrophic peat at 30 g d.w./l at pH ranging between 2 and 4) showed that the higher the initial cupric concentration, the more important is this complexation reaction; over this initial cupric concentration range, ion exchange sites were relatively saturated and reached 308 and 101 mmol/kg d.w. for eutrophic and oligotrophic peat whereas no saturation was found for complexation sites, their capacity attaining up to 74 and 119 mmol/kg d.w., respectively.

The apparent equilibrium constant for ion exchange with acid-treated peat (initial pH 4.0, 30 g d.w./l) for various metal binding on both peat sites ranged between 1.1 and 10.8 in 15 mM metallic solutions. The apparent affinity in batch conditions for 5 elements may be compared according to the apparent global equilibrium constants, ranging between 1.1 × 10−6 and 20.2 × 10−6: Pb > Cu > Ca > Mg, Zn for eutrophic peat and Pb > Ca > Cu > Mg, Zn for oligotrophic peat.  相似文献   


6.
The LC50 for total Cd averaged 4.8 and 8.0 μg1−1 in river water and 33% sewage-treatment-plant effluent (STPE), respectively, and for Chelex-labile Cd, 3.9 and 5.6 μg1−1, respectively. The LC50 values for total Cd were significantly (P < 0.05) different, indicating a reduction in toxicity of Cd in the presence of 33% STPE, presumably due to complexation of Cd2+. The similarity of LC50 values for Chelex-labile Cd indicates that that fraction contained toxic species of Cd at approximately the same concentration(s) in both river water and 33% STPE; it is therefore considered a better measure of Cd toxicity than total Cd. Furthermore, mortality was correlated with the concentration of Chelex-labile Cd but not with that of Chelex-nonlabile Cd. Measurements of Cd2+-complexing capacity by the Chelex method indicated that toxicity was due, at least in part, to Cd2+. Values were less than those obtained by the ion-selective-electrode method; these indicated that toxicity was due only to complexed Cd. Values from both methods were uncorrelated with LC50 values.  相似文献   

7.
We report simultaneous laboratory measurements of seismic velocities and fluid permeability on lava flow basalt from Etna (Italy) and columnar basalt from Seljadur (Iceland). Measurements were made in a servo-controlled steady-state-flow permeameter at effective pressures from 5–80 MPa, during both increasing and decreasing pressure cycles. Selected samples were thermally stressed at temperatures up to 900 °C to induce thermal crack damage. Acoustic emission output was recorded throughout each thermal stressing experiment.

At low pressure (0–10 MPa), the P-wave velocity of the columnar Seljadur basalt was 5.4 km/s, while for the Etnean lava flow basalt it was only 3.0–3.5 km/s. On increasing the pressure to 80 MPa, the velocity of Etnean basalt increased by 45%–60%, whereas that of Seljadur basalt increased by less than 2%. Furthermore, the velocity of Seljadur basalt thermally stressed to 900 °C fell by about 2.0 km/s, whereas the decrease for Etnean basalt was negligible. A similar pattern was observed in the permeability data. Permeability of Etnean basalt fell from about 7.5×10−16 m2 to about 1.5×10−16 m2 over the pressure range 5–80 MPa, while that for Seljadur basalt varied little from its initial low value of 9×10−21 m2. Again, thermal stressing significantly increased the permeability of Seljadur basalt, whilst having a negligible effect on the Etnean basalt. These results clearly indicate that the Etnean basalt contains a much higher level of crack damage than the Seljadur basalt, and hence can explain the low velocities (3–4 km/s) generally inferred from seismic tomography for the Mt. Etna volcanic edifice.  相似文献   


8.
The interaction of the trace metals Cu, Co, Zn, Ni, Pb and Cd with aluminium hydroxide precipitated in-situ from homogeneous solution was studied. Using total concentrations of 10−4 M Al, 10−7 M Zn, Cu, Co, Ni and 10−8 M Pb and Cd a removal of Zn, Cu, Pb, Cd from solution occurred together with Al, while Co and Ni concentrations in solution remained unchanged. The binding of Cu, Pb and Zn, Cd is in agreement with the effect predicted by using published (resp. evaluated for Zn and Cd), values for stability constants of surface complexes on preformed Al2O3-suspension. The different behaviour of these elements and of Co and Ni is expected from the hydrolysis and adsorption tendencies. The experimental conditions correspond to natural conditions in lake waters, where due to the pH-dependent solubility of aluminium hydroxide, in-situ precipitation may occur and cause the scavenging of trace elements.  相似文献   

9.
The aims of this study were to demonstrate the (1) feasibility of psychrophilic, or low-temperature, anaerobic digestion (PAD) of phenolic wastewaters at 10–15 °C; (2) economic attractiveness of PAD for the treatment of phenol as measured by daily biogas yields and (3) impact on bioreactor performance of phenol loading rates (PLRs) in excess of those previously documented (1.2 kg phenol m−3 d−1). Two expanded granular sludge bed (EGSB)-based bioreactors, R1 and R2, were employed to mineralise a volatile fatty acid-based wastewater. R2 influent wastewater was supplemented with phenol at an initial concentration of 500 mg l−1 (PLR, 1 kg m−3 d−1). Reactor performance was measured by chemical oxygen demand (COD) removal efficiency, CH4 composition of biogas and phenol removal (R2 only). Specific methanogenic activity, biodegradability and toxicity assays were employed to monitor the physiological capacity of reactor biomass samples. The applied PLR was increased to 2 kg m−3 d−1 on day 147 and phenol removal by day 415 was 99% efficient, with 4 mg l−1 present in R2 effluent. The operational temperature of R1 (control) and R2 was reduced by stepwise decrements from 15 °C through to a final operating temperature of 9.5 °C. COD removal efficiencies of c. 90% were recorded in both bioreactors at the conclusion of the trial (day 673), when the phenol concentration in R2 effluent was below 30 mg l−1. Daily biogas yields were determined during the final (9.5 °C) operating period, when typical daily R2 CH4 yields of c. 3.3 l CH4 g−1 CODremoved d−1 were recorded. The rate of phenol depletion and methanation by R2 biomass by day 673 were 68 mg phenol g VSS−1 d−1 and 12–20 ml CH4 g VSS−1 d−1, respectively.  相似文献   

10.
Alachlor is one of the two most commonly used herbicides in the United States. In the environment, little mineralization of this compound has been found to occur, and metabolites of alachlor may be formed and could accumulate. The objectives of this study were to determine the rate of alachlor biotransformation and to identify the transformation intermediates formed under aqueous denitrifying, methanogenic, and sulfate-reducing conditions. Second-order biotrasnformation coefficients for alachlor were determined to be 7.6 × 10−5 (±4.0 × 10−5), 2.9 × 10−3 (±1.6 × 10−3), and 1.5 × 10−2 (±1.4 × 10−2) 1 mg VSS−1 day−1 under denitrifying, methanogenic, and sulfate-reducing conditions, respectively. Acetyl alachlor and diethyl aniline were positively identified as transformation products of alachlor under all conditions. In denitrifying reactors aniline was identified as a product of alachlor. When acetyl alachlor was fed as the parent compound, aniline was also identified as a transformation product under methanogenic conditions. This research showed that although alachlor is degraded under denitrifying, methanogenic, and sulfate-reducing conditions, significant concentrations of several metabolites are formed and are only slowly degraded.  相似文献   

11.
The presence of nitrite ions (1 × 10−4 M) in the reaction medium affected the aqueous reaction of aniline (1 × 10−4 M) and ozone (2.07–2.15 × 10−4 M) at pH 6.25–10.65; o-, m- and p-nitroaniline were formed in addition to reaction products reported earlier. The combined yield of o- and p-nitroaniline was as high as 8%. Their yields were significantly higher at pH 6.25 and 7.25 than at pH 10.65 and carbonate species-inhibited their formation. The reaction mechanisms for the formation of the nitroanilines involves pernitrous acid, hydroxyl radical and nitrogen dioxide radical as the important intermediates.  相似文献   

12.
To understand the relationship between pore space anisotropy and petrophysical properties, we developed a novel apparatus capable of simultaneously measuring permeability, porosity and ultrasonic velocities at hydrostatic pressures up to 100 MPa. First, we use magnetic susceptibilities and acoustic wave velocities to identify the principal anisotropy axes under ambient laboratory conditions. This directional anisotropy data is then used to guide experiments on two sandstones (Bentheim and Crab Orchard) under hydrostatic pressure from 5 to 90 MPa. We find the structural anisotropy formed by the void space is well described by velocity anisotropy in both cases. Under hydrostatic pressure, the acoustic anisotropy of Crab Orchard sandstone (COS) decreases from 3% and 7% at 5 MPa (P-wave and S-wave) to 1.5% and 1%, respectively, at effective pressures over 40 MPa; for Bentheim sandstone the decrease is considerably less. Permeability of COS is 125×10−18 m2, decreasing rapidly as effective pressure increases, with permeability parallel to bedding approximately twice that normal to bedding. In contrast, permeability of Bentheim sandstone is 0.86×10−12 m2, and varies little with effective pressure or coring direction. We relate many of our measurements made under hydrostatic pressure to the contrasting pore fabric between the two rock types, and infer that a critical pressure is required for the initiation of crack closure.  相似文献   

13.
The ability of both living and dry cells of Gloeothece magna, a non-toxic freshwater cyanobacterium, to adsorb cadmium and manganese is demonstrated in this study. Chlorophyll a content of living cells was not influenced by either cadmium or manganese concentrations, indicating that adsorption of both Cd2+ and Mn2+ by living cells of G. magna, was independent of the metabolic state of the organism. Moreover, the adsorption of both Cd2+ and Mn2+ to living cells and dry cells, was dependent on the metal concentrations, and fitted the Freundlich adsorption isotherm. However, dry cells had larger binding capacity for both Cd2+ (Kf=912.6) and Mn2+ (Kf=2398) than living cells (Kf=151.4 & 63, respectively). The role of the capsular polysaccharides, the main constituents of the cyanobacterial envelope, in binding these two metals was also studied. Polysaccharide extracts of this organism adsorbed high amounts of both Cd2+ (115–425 μg mg−1) and Mn2+ (473–906 μg mg−1). This study suggests that G. magna would probably be cultured in water bodies contaminated by heavy metals to ameliorate their toxicity. Also dry material of this cyanobacterium being a non-toxic species, could be used as a safe biofilter to remove toxic metals from drinking water.  相似文献   

14.
Zero net growth in a membrane bioreactor with complete sludge retention   总被引:5,自引:0,他引:5  
A bench-scale membrane bioreactor was operated with complete sludge retention in order to evaluate biological processes and biomass characteristics over the long term. The investigation was carried out by feeding a bench-scale plant with real sewage under constant volumetric loading rate (VLR=1.2 gCOD Lreact−1 h−1). Biological processes were monitored by measuring substrate removal efficiencies and biomass-related parameters. The latter included bacterial activity as determined through respirometric tests specifically aimed at investigating long term heterotrophic and nitrifying activity. After about 180 days under the imposed operating conditions, the system reached equilibrium conditions with constant VSS concentration of 16–18 g L−1, organic loading rate (OLR) below 0.1 gCOD gVSS−1 d−1 and specific respiration rates of 2–3 mgO2 gVSS−1 h−1. These conditions were maintained for more than 150 days, confirming that an equilibrium had been achieved between biomass growth, endogenous metabolism, and solubilization of inorganic materials.  相似文献   

15.
A comparative study of the transformation of the herbicide fenuron (1,1-dimethyl-3-phenylurea) by hydroxyl radicals and carbonate radicals in aqueous solution (pH 7.2-phosphate buffer) has been undertaken. Hydroxyl radical was generated by the well-known photolysis of hydrogen peroxide at 254 nm and carbonate radical was formed by photolysis of Co(NH3)5CO3+ at 254 nm. Competitive kinetic experiments were performed with atrazine used as the main competitor for both processes. Accordingly, the second-order rate constant of reaction between fenuron and carbonate radical was found to be (7−12±3)×106 M−1 s−1 [(7±1)×109 M−1 s−1 for hydroxyl radical]. The formation of degradation products was studied by LC-MS in the two cases and a comparison has been performed. The reaction with carbonate radical leads to the formation of a quinone-imine derivative which appears as the major primary product together with ortho and para hydroxylated compounds. These two compounds represent the major products in the reaction with hydroxyl radicals. The reaction of both radicals also leads to the transformation of the dimethylurea moiety.  相似文献   

16.
Palma G  Freer J  Baeza J 《Water research》2003,37(20):4974-4980
Pinus radiata bark and tannins, chemically modified with an acidified formaldehyde solution were used for removing metal ions from aqueous solutions and copper mine acidic residual waters. The adsorption ability to different metal ions [V(V), Re(VII), Mo(VI), Ge(IV), As(V), Cd(II), Hg(II), Al(III), Pb(II), Fe(II), Fe(III), Cu(II)] and the factors affecting their removal from solutions were investigated. Effect of pH on the adsorption, desorption, maximum adsorption capacity of the adsorbents, and selectivity experiments with metal ion solutions and waste waters from copper mine were carried out. The adsorbents considerably varied in the adsorption ability to each metal ion. The adsorption depends largely upon the pH of the solution. Modified tannins showed lower adsorption values than the modified bark. For the same adsorbent, the maximum capacity at pH 3 for the different ions were very different, ranging for modified bark from 6.8 meqg−1 for V to 0.93 meqg−1 for Hg. Waste waters were extracted with modified bark as adsorbent and at pH 2. The ions Cu(II) (35.2 mgL−1), Fe(III) (198 mgL−1), Al(III) (83.5 mgL−1) and Cd(II) (0.15 mgL−1) were removed in 15.6%, 46.9%, 83.7% and 3.3%, respectively, by using 1 g of adsorbent/10 mL of waste water. In general, a continuous adsorption on a packed column gave higher adsorbed values than those observed in the batchwise experiment.  相似文献   

17.
Jeon BH  Dempsey BA  Burgos WD  Royer RA 《Water research》2003,37(17):4135-4142
The reactions of Fe(II) and other divalent metal ions including Zn, Co, Ni, and Cd on hematite were studied in single and competitive binary systems with high sorbate/sorbent ratios in 10 mM PIPES (pH 6.8) solution under strict anoxic conditions. Adsorbed Me(II) was defined as extractable by 0.5 N HCl within 20 h, and fixed Me(II) was defined as the additional amount that was extracted by 3.0 N HCl within 7 days. Binary systems contained Fe(II) plus a second metal ion. The extent of uptake of divalent metal ions by hematite was in order of Fe> or =Zn>Co> or =Ni>Cd. For all metals tested, there was an instantaneous adsorption followed by a relatively slow stage that continued for the next 1-5 days. This sequence occurred in both single and binary systems, and could have been due to a variety of sorption site types or due to slow conversion from outer- to inner-sphere surface complexes due to increasing surface charge. Sorption competition was observed between Fe(II) and the other metal ions. The displacement of Fe(II) by Me(II) was in order of Ni approximately Zn>Cd, and the displacement of Me(II) by Fe(II) was in order of Cd>Zn approximately Ni>Co. Fixed Fe(II) was in order of Fe+Co (20%)>Fe+Cd (6%)>Fe approximately Zn (4%)>Fe approximately Ni (4%) after 30 days. There was no fixation for the other metals in single or binary systems.  相似文献   

18.
Wang GP  Liu JS  Tang J 《Water research》2004,38(20):1927-4474
Sediment cores, representing a range of watershed characteristics and anthropogenic impacts, were collected from two freshwater marshes at the Xianghai wetlands (Ramsar site no. 548) in order to trace the historical variation of nutrient accumulation. Cores were 210Pb- and 137Cs-dated, and these data were used to calculate sedimentation rates and sediment accumulation rates. Ranges of dry mass accumulation rates and sedimentation rates were 0.27–0.96 g m−2 yr−1 and 0.27–0.90 cm yr−1, respectively. The effect of human activities on increased sediment accumulation rates was observed. Nutrients (TOC, N, P, and S) in sediment were analyzed and nutrient concentration and accumulation were compared in two marshes with different hydrologic regime: an “open” marsh (E-0) and a partly “closed” marsh (F-0). Differences in physical and chemical characteristics between sediments of “open” and partly “closed” marsh were also observed. The “open” marsh sequestered much higher amounts of TOC (1.82%), N (981.1 mg kg−1), P (212.17 mg kg−1), and S (759.32 mg kg−1) than partly “closed” marsh (TOC: 0.32%, N: 415.35 mg kg−1, P: 139.64 mg kg−1, and S: 624.45 mg kg−1), and the “open” marsh indicated a rather large historical variability of TOC, N, P, and S inputs from alluvial deposits. Nutrient inputs (2.16–251.80 g TOC m−2 yr−1, 0.43–20.12 g N m−2 yr−1, 0.39–3.03 g P m−2 yr−1, 1.60–15.13 g S m−2 yr−1) into the Xianghai wetlands of China are in the high range compared with reported nutrient accumulation rates for freshwater marshes in USA. The vertical variation, particularly for N, P, and S indicated the input history of the nutrients of the Xianghai wetlands developed in three periods—before 1950s, 1950–1980s, and after 1980s. The ratios between anthropogenic and natural inputs showed that the relative anthropogenic inputs of TOC, N, P, and S have been severalfold (TOC: 1.68–11.21, N: 0.47–3.67, P: 0.24–1.36, and S: 1.46–2.96) greater than values of their natural inputs after 1980s. The result is probably attributable, in part, to two decades of surface coal mining activities, urban sewage, and agriculture runoff within the upstream region of the Huolin River. Our findings suggest that the degree of anthropogenic disturbance within the surrounding watershed regulates wetland sediment, TOC, N, P, and S accumulation.  相似文献   

19.
Needlepunched nonwoven geotextiles are entangled to form a complex three-dimensional structure by random fibers, accounting for its bulky nature, wide range of pore size distribution, and good drainage. With needlepunched nonwoven geotextiles, water can move in both the vertical and horizontal directions. This paper examines two types of needlepunched nonwovens: one produced from polyester staple fiber and the other made from polyester spunbond continuous filaments. Experimental results indicate that the permittivity of staple needlepunched nonwoven geotextiles varies from 1.77-4.51 s−1; the permeability coefficient varies from 0.63-2.87 × 10−2 m/s. The permittivity of spunbond needlepunched nonwoven geotextiles varies from 1.13-1.97 s−1; the permeability coefficient varies from 0.48-1.09 × 10−2 m/s. In addition, the transmissivity of needlepunched nonwoven geotextiles decrease to an essentially constant value as the normal stress is increases. The transmissivity of needlepunched nonwoven geotextiles examined varies from 155-2.75 × 10−6 m2/s over the normal stress range examined (5-200 kN/m2). The AOS value of 3 denier staple fiber needlepunched nonwovens is less than 0.074 mm, the AOS value of spunbonded 7 denier and, 15 d and 20 d needlepunched nonwovens are 0.21 mm, 0.25 mm and 0.30 mm, respectively.  相似文献   

20.
Parallel experiments were conducted under stagnant and flowing conditions to determine whether sodium tripolyphosphate (TPP), the conventional detergent builder, or two potential replacements, nitrilotriacetic acid (NTA) and ethylene—diaminetetraacetic acid (EDTA) significantly influenced the mobilization of major cations (Ca, Mg, Na, K) and some heavy metals (Fe, Mn, Zn, Cu, Pb, Cr). Water sediments and tissue of chironomid adults (Chironomus tentans Fabricius), crayfish (Orconectes virilis Hagen) and rainbow trout (Salmo gairdnerii Richardson) were examined. The results showed that the chelating agents applied in concentrations of 0.2–5.0 mg 1−1 often increased the concentration of iron, manganese, lead and zinc in water above contaminated lake sediments. Other heavy metals were not affected significantly. EDTA was the most active mobilizing agent while NTA and TPP both had a less significant effect. The chelating agents generally had little effect on the rate of uptake of most metals by chironomids in aquaria. The role of chelating agents in flowing systems was even less pronounced. Zinc concentrations in water were significantly elevated by the treatment with 1 mg 1−1 EDTA and manganese concentrations were significantly higher in trout from the pond treated with an intermediate level (1 mg 1−1) of NTA. All other treatments yielded levels of major ions and heavy metals that were not significantly different from those in the control ponds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号