共查询到20条相似文献,搜索用时 15 毫秒
1.
Five trained men were studied during 2 h of cycling exercise at 67% peak oxygen uptake at 20-22 degrees C to examine the effect of fluid ingestion on muscle metabolism. On one occasion, the subjects completed this exercise without fluid ingestion (NF) while on the other they ingested a volume of distilled deionized water that prevented loss of body mass (FR). No differences in oxygen uptake during exercise were observed between the two trials. Heart rate was lower (P < 0.01) throughout exercise when fluid was ingested, and rectal temperature after 2 h of exercise was lower (38.0 +/- 0.2 and 38.6 +/- 0.2 degrees C for FR and NF, respectively; P < 0.01), as was muscle (vastus lateralis) temperature (38.5 +/- 0.4 and 39.1 +/- 0.5 degrees C for FR and NF, respectively; P < 0.05). Resting muscle ATP, creatine phosphate, creatine, glycogen, and lactate levels were similar in the two trials, as were the postexercise ATP, creatine phosphate, and creatine levels. In contrast, muscle glycogen was higher (P < 0.05) and muscle lactate was lower (P < 0.05) after 2 h of exercise in FR compared with NF. Net muscle glycogen utilization during exercise was reduced by 16% when fluid was ingested (318 +/- 46 and 380 +/- 53 mmol/kg dry weight for FR and NF, respectively; P < 0.05). These results indicate that fluid ingestion reduces muscle glycogen use during prolonged exercise, which may account, in part, for the improved performance previously observed with fluid ingestion. 相似文献
2.
H Sugimoto 《Canadian Metallurgical Quarterly》1996,97(9):726-732
Energy substrate metabolism during stress is characterized by increased REE (resting energy expenditure), hyperglycemia, hyperlactatemia and protein catabolism. This stress-induced hypermetabolic responses are closely related to increased secretion of neurohormonal and cytokine mediators. The insulin resistance hyperglycemia has been called "stress diabetes" or "surgical diabetes". Glucose disposal has been thought to be impaired in this condition. However, glucose uptake in most tissue is non-insulin mediated. Recent studies showed glucose uptake elevated in sepsis or TNF infusion. Insulin-regulatable glucose transporter (GLUT4) is present only in muscle, heart and adipose tissues. It was demonstrated that insulin binding to membrane receptors in these tissues was intact. This hyperglycemia in stress diabetes results from a postreceptor mechanism. Stress hyperlactatemia is thought to be caused by decreased pyruvate dehydrogenase activity rather than tissue hypoperfusion. Hyperlactatemia may promote gluconeogenesis. Glucose is a essential energy substrate in some tissues such as brain, erythrocyte and leukocyte. Hyperglycemia may be viewed as a beneficial response during stress. 相似文献
3.
Carbohydrate (CHO) ingestion during exercise, in the form of CHO-electrolyte beverages, leads to performance benefits during prolonged submaximal and variable intensity exercise. However, the mechanism underlying this ergogenic effect is less clear. Euglycaemia and oxidation of blood glucose at high rates late in exercise and a decreased rate of muscle glycogen utilisation (i.e. glycogen 'sparing') have been proposed as possible mechanisms underlying the ergogenic effect of CHO ingestion. The prevalence of one or the other mechanism depends on factors such as the type and intensity of exercise, amount, type and timing of CHO ingestion, and pre-exercise nutritional and training status of study participants. The type and intensity of exercise and the effect of these on blood glucose, plasma insulin and catecholamine levels, may play a major role in determining the rate of muscle glycogen utilisation when CHO is ingested during exercise. The ingestion of CHO (except fructose) at a rate of > 45 g/h, accompanied by a significant increase in plasma insulin levels, could lead to decreased muscle glycogen utilisation (particularly in type I fibres) during exercise. Endurance training and alterations in pre-exercise muscle glycogen levels do not seem to affect exogenous glucose oxidation during submaximal exercise. Thus, at least during low intensity or intermittent exercise, CHO ingestion could result in reduced muscle glycogen utilisation in well trained individuals with high resting muscle glycogen levels. Further research needs to concentrate on factors that regulate glucose uptake and energy metabolism in different types of muscle fibres during exercise with and without CHO ingestion. 相似文献
4.
5.
R Nohara R Hosokawa T Hirai K Okuda M Ogino Y Fujibayashi M Fujita S Sasayama 《Canadian Metallurgical Quarterly》1998,39(7):1132-1137
The lipid tracer 1 5-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid (BMIPP) is clinically useful, and its basic metabolism is being analyzed. Because the pharmacokinetics of this lipid tracer may be affected by blood concentrations of fatty acid or glucose, this study evaluated the effects of excess levels of lipid or glucose on BMIPP uptake and metabolism. METHODS: A technique using an open-chest dog model was used. Blood sampling was performed from the left anterior descending coronary artery and great cardiac vein after an injection of 123I-BMIPP either with a glucose infusion (n = 6) or a lipid infusion (n = 5). High performance liquid chromatography and double-tracer kinetic analyses clarified the extraction, retention, backdiffusion and further metabolism of BMIPP. These results were compared with data from control dogs (n = 6). RESULTS: In this experiment, a 10-fold increase over the normal lipid blood concentration and twofold increase over the normal blood glucose concentration were evaluated with either intralipid or glucose infusion, respectively. In the lipid infusion studies, the extraction significantly decreased compared with the control values (74% +/- 12% to 58% +/- 8%; p < 0.05), and the washout increased from 50% +/- 13% to 68% +/- 16% (p < 0.05). The BMIPP backdiffusion increased (p < 0.05), and the levels of the further metabolites decreased (p < 0.05), while the retention level remained constant (normal, 89% +/- 9%; lipid infusion, 91% +/- 3%; ns). In the glucose infusion studies, the BMIPP extraction, retention and washout showed no statistical differences compared to controls; however, these parameters showed the same tendencies as those in the lipid infusion group. In addition, the BMIPP backdiffusion increased significantly (control, 25.1% +/- 8%; glucose infusion, 48.7% +/- 25.6%; p < 0.05) as it did after the lipid infusion. CONCLUSION: BMIPP metabolism and uptake are affected by excess concentrations of lipid and glucose in the blood. However, the retention of BMIPP was not affected by either type of infusion. The BMIPP backdiffusion and the further metabolite comprising 10% of the tracer extracted were affected both by the lipid and glucose infusions. These results indicate that an excess fat concentration and glucose affect BMIPP uptake, especially the extraction of BMIPP and BMIPP backdiffusion. 相似文献
6.
7.
The ventromedial and posterior hypothalamic nuclei are known to influence glucoregulation during exercise. The extensive projections of the paraventricular hypothalamic nucleus (PVN) to the sympathetic nervous system suggest that the PVN also may be involved in glucoregulation during exercise. The region of the PVN was anaesthetized with bupivacaine before running (26 m min-1) or continued rest, via previously implanted bilateral brain cannulas aimed at the dorsal aspect of the PVN. Control rats were treated identically to PVN-anaesthetized rats, but were not infused. Blood, for determination of plasma concentrations of metabolites and hormones, was drawn from a tail artery, and 3H-glucose was infused in a tail vein for glucose turnover determinations. At rest, no significant changes in plasma concentrations of metabolites or hormones were induced by anaesthesia of the region of the PVN. During exercise, glucose production and utilization and plasma concentrations of glucose, lactate, glycerol, noradrenaline, adrenaline, corticosterone, and glucagon increased (P < 0.02) and plasma insulin decreased (P < 0.02) in all rats. However, initially in exercise, adrenaline (4.3 +/- 0.8 vs. 7.9 +/- 1.0 nmol l-1 in controls, P < 0.05, t = 6 min) and later corticosterone levels (1.37 +/- 0.06 vs. 1.69 +/- 0.10 nmol l-1 in controls, P < 0.05, t = 20 min) were attenuated by PVN anaesthesia. Initially during exercise, glucose utilization was higher and plasma glucose lower in PVN-anaesthetized rats compared to controls (16.6 +/- 0.8 vs. 12.7 +/- 0.6 mumol min-1 100 g-1 and 7.1 +/- 0.2 vs. 8.1 +/- 0.2 mmol l-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
8.
RJ Snow MJ McKenna SE Selig J Kemp CG Stathis S Zhao 《Canadian Metallurgical Quarterly》1998,84(5):1667-1673
The aim of the present study was to examine the effect of creatine supplementation (CrS) on sprint exercise performance and skeletal muscle anaerobic metabolism during and after sprint exercise. Eight active, untrained men performed a 20-s maximal sprint on an air-braked cycle ergometer after 5 days of CrS [30 g creatine (Cr) + 30 g dextrose per day] or placebo (30 g dextrose per day). The trials were separated by 4 wk, and a double-blind crossover design was used. Muscle and blood samples were obtained at rest, immediately after exercise, and after 2 min of passive recovery. CrS increased the muscle total Cr content (9.5 +/- 2.0%, P < 0.05, mean +/- SE); however, 20-s sprint performance was not improved by CrS. Similarly, the magnitude of the degradation or accumulation of muscle (e.g., adenine nucleotides, phosphocreatine, inosine 5'-monophosphate, lactate, and glycogen) and plasma metabolites (e.g. , lactate, hypoxanthine, and ammonia/ammonium) were also unaffected by CrS during exercise or recovery. These data demonstrated that CrS increased muscle total Cr content, but the increase did not induce an improved sprint exercise performance or alterations in anaerobic muscle metabolism. 相似文献
9.
LS Sidossis 《Canadian Metallurgical Quarterly》1998,23(6):558-569
Glucose and fatty acids are the main energy sources for oxidative metabolism in endurance exercise. Although a reciprocal relationship exists between glucose and fatty acid contribution to energy production for a given metabolic rate, the controlling mechanism remains debatable. Randle et al.'s (1963) glucose-fatty acid cycle hypothesis provides a potential mechanism for regulating substrate interaction during exercise. The cornerstone of this hypothesis is that the rate of lipolysis, and therefore fatty acid availability, controls how glucose and fatty acids contribute to energy production. Increasing fatty acid availability attenuates carbohydrate oxidation during exercise, mainly via sparing intramuscular glycogen. However, there is little evidence for a direct inhibitory effect of fatty acids on glucose oxidation. We found that glucose directly determines the rate of fat oxidation by controlling fatty acid transport into the mitochondria. We propose that the intracellular availability of glucose, rather than fatty acids, regulates substrate interaction during exercise. 相似文献
10.
We examined the evidence for greater fat utilization by women during exercise and the potential gender differences in specific cellular processes. Results from well-controlled studies show that, compared to men, women oxidize more fat during submaximal exercise, resulting in the relative sparing of muscle glycogen. Mature female rats use less muscle glycogen during running and can run longer than male counterparts. Circulating estrogen is critical to these observations, as shown by studies where male rats were treated with estrogen. Estrogen-treated male rats use less muscle glycogen during exercise and can run longer than untreated males. The cellular mechanisms and factors underlying these findings are unknown and certainly multifactorial. We offer some information that, unfortunately, does not lead to any natural conclusion. However, this area is certainly ripe for research. 相似文献
11.
SA Smith SJ Montain RP Matott GP Zientara FA Jolesz RA Fielding 《Canadian Metallurgical Quarterly》1998,85(4):1349-1356
Young [n = 5, 30 +/- 5 (SD) yr] and middle-aged (n = 4, 58 +/- 4 yr) men and women performed single-leg knee-extension exercise inside a whole body magnetic resonance system. Two trials were performed 7 days apart and consisted of two 2-min bouts and a third bout continued to exhaustion, all separated by 3 min of recovery. 31P spectra were used to determine pH and relative concentrations of Pi, phosphocreatine (PCr), and beta-ATP every 10 s. The subjects consumed 0.3 g . kg-1 . day-1 of a placebo (trial 1) or creatine (trial 2) for 5 days before each trial. During the placebo trial, the middle-aged group had a lower resting PCr compared with the young group (35.0 +/- 5.2 vs. 39.5 +/- 5.1 mmol/kg, P < 0.05) and a lower mean initial PCr resynthesis rate (18.1 +/- 3.5 vs. 23.2 +/- 6.0 mmol . kg-1 . min-1, P < 0.05). After creatine supplementation, resting PCr increased 15% (P < 0.05) in the young group and 30% (P < 0.05) in the middle-aged group to 45.7 +/- 7.5 vs. 45.7 +/- 5.5 mmol/kg, respectively. Mean initial PCr resynthesis rate also increased in the middle-aged group (P < 0.05) to a level not different from the young group (24.3 +/- 3.8 vs. 24.2 +/- 3.2 mmol . kg-1 . min-1). Time to exhaustion was increased in both groups combined after creatine supplementation (118 +/- 34 vs. 154 +/- 70 s, P < 0.05). In conclusion, creatine supplementation has a greater effect on PCr availability and resynthesis rate in middle-aged compared with younger persons. 相似文献
12.
To determine how osmolality of an orally ingested fluid-replacement beverage would alter intestinal fluid absorption from the duodenum and/or jejunum during 85 min of cycle exercise (63.3 +/- 0.9% peak O2 uptake) in a cool environment (22 degreesC), seven subjects (5 men, 2 women, peak O2 uptake = 54.5 +/- 3.8 ml . kg-1 . min-1) participated in four experiments separated by 1 wk in which they ingested a water placebo (WP) or one of three 6% carbohydrate (CHO) beverages formulated to give mean osmolalities of 197, 295, or 414 mosmol/kgH2O. CHO solutions also contained 17-18 meq Na+ and 3.2 meq K+. Nasogastric and multilumen tubes were fluoroscopically positioned in the gastric antrum and duodenojejunum, respectively. Subjects ingested a total of 23 ml/kg body mass of the test solution, 20% (370 +/- 9 ml) of this volume 5 min before exercise and 10% (185 +/- 4 ml) every 10 min thereafter. By using the rate of gastric emptying as the rate of intestinal perfusion (G. P. Lambert, R. T. Chang, D. Joensen, X. Shi, R. W. Summers, H. P. Schedl, and C. V. Gisolfi. Int. J. Sports Med. 17: 48-55, 1996), intestinal absorption was determined by segmental perfusion from the duodenum (0-25 cm) and jejunum (25-50 cm). There were no differences (P > 0.05) in gastric emptying (mean 18.1 +/- 1.3 ml/min) or total fluid absorption (802 +/- 109, 650 +/- 52, 674 +/- 62, and 633 +/- 74 ml . 50 cm-1 . h-1 for WP, hypo-, iso-, and hypertonic solutions, respectively) among beverages; but WP was absorbed faster (P < 0.05) from the duodenum than in the jejunum. Of the total volume of fluid ingested, 82 +/- 14, 74 +/- 6, 76 +/- 5, and 68 +/- 7% were absorbed for WP, hypo-, iso-, and hypertonic beverages, respectively. There were no differences in urine production or percent change in plasma volume among solutions. We conclude that total fluid absorption of 6% CHO-electrolyte beverages from the duodenojejunum during exercise, within the osmotic range studied, is not different from WP. 相似文献
13.
J Henriksson 《Canadian Metallurgical Quarterly》1977,270(3):661-675
1. Six subjects were trained using a one-leg bicycle exercise for 2 months. The untrained leg served as control. After the training period, muscle oxidative capacity, determined as succinate dehydrogenase activity, was 27% higher in the trained (as opposed to the control) leg (P < 0.05).2. When the subjects in this situation performed a 1 h two-legged submaximal bicycle exercise bout (150-225 W), determinations of V(O2) of the single leg (leg blood flow x (A-V)(O2) difference) revealed that they appeared to choose to work harder with their trained than with their untrained leg, so as to make the relative loads for the two legs the same.3. Determinations of O(2) and CO(2) on femoral arterial and venous blood demonstrated that the R.Q. was lower in the trained as compared to the untrained leg, 0.91 cf. 0.96 (10 min) and 0.91 cf. 0.94 (50 min) (P < 0.05).4. That metabolism of fat was more pronounced in the trained leg was further supported by the finding of a significant net uptake of free fatty acids in this leg only. Moreover, a lower release of lactate from the trained leg was demonstrated.5. It is suggested that the shift towards a more pronounced metabolism of fat in the trained leg is a function of an increased muscle oxidative capacity. 相似文献
14.
15.
Investigations examining the ergogenic and metabolic influence of caffeine during short-term high-intensity exercise are few in number and have produced inconsistent results. This study examined the effects of caffeine on repeated bouts of high-intensity exercise in recreationally active men. Subjects (n = 9) completed four 30-s Wingate (WG) sprints with 4 min of rest between each exercise bout on two separate occasions. One hour before exercise, either placebo (P1; dextrose) or caffeine (Caf; 6 mg/kg) capsules were ingested. Caf ingestion did not have any effect on power output (peak or average) in the first two WG tests and had a negative effect in the latter two exercise bouts. Plasma epinephrine concentration was significantly increased 60 min after Caf ingestion compared with P1; however, this treatment effect disappeared once exercise began. Caf ingestion had no significant effect on blood lactate, O2 consumption, or aerobic contribution at any time during the protocol. After the second Wingate test, plasma NH3 concentration increased significantly from the previous WG test and was significantly higher in the Caf trial compared with P1. These data demonstrate no ergogenic effect of caffeine on power output during repeated bouts of short-term, intense exercise. Furthermore, there was no indication of increased anaerobic metabolism after Caf ingestion with the exception of an increase in NH3 concentration. 相似文献
16.
This study aimed to determine gender-based differences in fuel metabolism in response to long-duration exercise. Fuel oxidation and the metabolic response to exercise were compared in men (n = 14) and women (n = 13) during 2 h (40% of maximal O2 uptake) of cycling and 2 h of postexercise recovery. In addition, subjects completed a separate control day on which no exercise was performed. Fuel oxidation was measured using indirect calorimetry, and blood samples were drawn for the determination of circulating substrate and hormone levels. During exercise, women derived proportionally more of the total energy expended from fat oxidation (50.9 +/- 1.8 and 43. 7 +/- 2.1% for women and men, respectively, P < 0.02), whereas men derived proportionally more energy from carbohydrate oxidation (53.1 +/- 2.1 and 45.7 +/- 1.8% for men and women, respectively, P < 0.01). These gender-based differences were not observed before exercise, after exercise, or on the control day. Epinephrine (P < 0.007) and norepinephrine (P < 0.0009) levels were significantly greater during exercise in men than in women (peak epinephrine concentrations: 208 +/- 36 and 121 +/- 15 pg/ml in men and women, respectively; peak norepinephrine concentrations: 924 +/- 125 and 659 +/- 68 pg/ml in men and women, respectively). As circulating glycerol levels were not different between the two groups, this suggests that women may be more sensitive to the lipolytic action of the catecholamines. In conclusion, these data support the view that different priorities are placed on lipid and carbohydrate oxidation during exercise in men and women and that these gender-based differences extend to the catecholamine response to exercise. 相似文献
17.
18.
MA Febbraio DL Lambert RL Starkie J Proietto M Hargreaves 《Canadian Metallurgical Quarterly》1998,84(2):465-470
To test the hypothesis that an elevation in circulating epinephrine increases intramuscular glycogen utilization, six endurance-trained men performed two 40-min cycling trials at 71 +/- 2% of peak oxygen uptake in 20-22 degrees C conditions. On the first occasion, subjects were infused with saline throughout exercise (Con). One week later, after determination of plasma epinephrine levels in Con, subjects performed the second trial (Epi) with an epinephrine infusion, which resulted in a twofold higher (P < 0.01) plasma epinephrine concentration in Epi compared with Con. Although oxygen uptake was not different when the two trials were compared, respiratory exchange ratio was higher throughout exercise in Epi compared with Con (0.93 +/- 0.01 vs. 0.89 +/- 0.01; P < 0.05). Muscle glycogen concentration was not different when the trials were compared preexercise, but the postexercise value was lower (P < 0.01) in Epi compared with Con. Thus net muscle glycogen utilization was greater during exercise with epinephrine infusion (224 +/- 37 vs. 303 +/- 30 mmol/kg for Con and Epi, respectively; P < 0.01). In addition, both muscle and plasma lactate and plasma glucose concentrations were higher (P < 0.05) in Epi compared with Con. These data indicate that intramuscular glycogen utilization, glycolysis, and carbohydrate oxidation are augmented by elevated epinephrine during submaximal exercise in trained men. 相似文献
19.
AJ Ryan GP Lambert X Shi RT Chang RW Summers CV Gisolfi 《Canadian Metallurgical Quarterly》1998,84(5):1581-1588
Dehydration and hyperthermia may impair gastric emptying (GE) during exercise; the effect of these alterations on intestinal water flux (WF) is unknown. Thus the purpose of this study was to determine the effect of hypohydration ( approximately 2.7% body weight) on GE and WF of a water placebo (WP) during cycling exercise (85 min, 65% maximal oxygen uptake) in a cool environment (22 degrees C) and to also compare GE and WF of three carbohydrate-electrolyte solutions (CES) while the subjects were hypohydrated. GE and WF were determined simultaneously by a nasogastric tube placed in the gastric antrum and via a multilumen tube that spanned the duodenum and the first 25 cm of jejunum. Hypohydration was attained 12-16 h before experiments by low-intensity exercise in a hot (45 degrees C), humid (relative humidity 50%) environment. Seven healthy subjects (age 26.7 +/- 1.7 yr, maximal oxygen uptake 55.9 +/- 8.2 ml . kg-1 . min-1) ingested either WP or a 6% (330 mosmol), 8% (400 mosmol), or a 9% (590 mosmol) CES the morning following hypohydration. For comparison, subjects ingested WP after a euhydration protocol. Solutions ( approximately 2.0 liters total) were ingested as a large bolus (4.6 ml/kg body wt) 5 min before exercise and as small serial feedings (2.3 ml/kg body wt) every 10 min of exercise. Average GE rates were not different among conditions (P > 0.05). Mean (+/-SE) values for WF were also similar (P > 0.05) for the euhydration (15.3 +/- 1.7 ml . cm-1 . h-1) and hypohydration (18.3 +/- 2.6 ml . cm-1 . h-1) experiments. During exercise after hypohydration, water absorption was greater (P < 0.05) with ingestion of WP (18.3 +/- 2. 6) and the 6% CES (16.5 +/- 3.7), compared with the 8% CES (6.9 +/- 1.5) and the 9% CES (1.8 +/- 1.7). Mean values for final core temperature (38.6 +/- 0.1 degrees C), heart rate (152 +/- 1 beats/min), and change in plasma volume (-5.7 +/- 0.7%) were similar among experimental trials. We conclude that 1) hypohydration to approximately 3% body weight does not impair GE or fluid absorption during moderate exercise when ingesting WP, and 2) hyperosmolality (>400 mosmol) reduced WF in the proximal intestine. 相似文献
20.
This study examined the effect of increased blood glucose availability on glucose kinetics during exercise. Five trained men cycled for 40 min at 77 +/- 1% peak oxygen uptake on two occasions. During the second trial (Glu), glucose was infused at a rate equal to the average hepatic glucose production (HGP) measured during exercise in the control trial (Con). Glucose kinetics were measured by a primed continuous infusion of D-[3-3H]glucose. Plasma glucose increased during exercise in both trials and was significantly higher in Glu. HGP was similar at rest (Con, 11.4 +/- 1.2; Glu, 10.6 +/- 0.6 micromol . kg-1 . min-1). After 40 min of exercise, HGP reached a peak of 40.2 +/- 5.5 micromol . kg-1 . min-1 in Con; however, in Glu, there was complete inhibition of the increase in HGP during exercise that never rose above the preexercise level. The rate of glucose disappearance was greater (P < 0.05) during the last 15 min of exercise in Glu. These results indicate that an increase in glucose availability inhibits the rise in HGP during exercise, suggesting that metabolic feedback signals can override feed-forward activation of HGP during strenuous exercise. 相似文献