首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
布林朝克  郭婷 《矿冶工程》2014,(1):77-81,86
分析了温度、碳储能、反应体系总压和惰性气体分压等因素对碳气化反应热力学的影响规律,并根据碳气化反应和铁氧化物的碳热还原反应之间的热力学联系,提出利用碳气化反应热力学的影响因素调控铁氧化物的碳热还原热力学,从而降低碳热还原温度,实现节能降耗的新思路:一是可利用碳气化反应热力学的影响因素降低铁氧化物的碳热还原温度;二是使Fe2O3在低于570℃下经Fe2O3→Fe3O4→Fe还原顺序被碳热还原为Fe。  相似文献   

2.
采用化学分析,XRD,SEM等检测手段,对碳热还原法制备的氮化钒铁中铁元素赋存状态进行了系统研究,对配碳系数、反应温度对氮化钒铁的氮钒比影响规律进行了系统研究。结果表明,以V_2O_3为原料,在高温下进行碳热还原反应制备的氮化钒铁,钒原子氮化形成氮化钒包覆层,铁主要以Fe形式存在,不均匀分布于氮化钒颗粒内部。反应条件直接影响氮化钒铁的氮钒比,制备高质量的氮化钒铁,需要控制较佳的工艺参数。  相似文献   

3.
某钒矿酸法提钒新工艺试验研究   总被引:5,自引:0,他引:5  
针对某大型页岩钒矿现行提钒工艺存在问题及该资源特点,确定采用两段逆流硫酸溶液浸出-中和-还原-萃取-铵盐沉钒的工艺。试验结果表明:在原料粒度为-120目、浸出液固比为1、浸出温度为90℃时,V2O5浸出率大于75%;用于富集浸出液中钒的萃取体系为15%P204+10%TBP+75%磺化煤油;该工艺提取V2O5总回收率大于70%,产品中V2O5含量大于99%。  相似文献   

4.
基于 USTB 工艺,以广西某钛业公司的浮选钛铁矿精矿为研究对象,研究钛铁矿精矿直接碳热还原制 取碳氧化钛(TiCxO1-x)机理和物相变化过程。采用 XRD、SEM-EDS 和 HSC 热力学软件对碳热还原产物及反应过程 进行分析,结果表明:随着碳配比量的增加,还原过程物相主要为:FeTi2O5、Ti2O3、Fe、TiO、TiCxO1-x、TiC;当石墨的配 比质量分数为 22.92%~26.61% 时,1 550 ℃氩气气氛下还原 4 h 可得到 TiCxO1-x;结合反应热力学和物相分析结果可 知,整个还原过程主要是固相 C 参与还原,CO 还原作用小,还原过程物相演化规律为:FeTiO3→FeTi2O5→Ti2O3+Fe→ TiO+Fe→TiC xO1-x+Fe。在 1 550 ℃下,反应生成 TiC 过程主要是固相碳起还原作用,CO 无法起到还原作用;生成碳 氧化钛 TiCxO1-x的 ΔG 介于 TiC 和 TiO 之间,属于不完全还原状态,主要通过控制碳配比量在反应温度内即可还原 得到碳氧化钛。  相似文献   

5.
采用试验测试的手段对碳热还原法制备氮化钒铁合金的性能进行表征,分析氮化温度等参数对N/V比例和产品氮化率的影响。研究结果表明:随配碳系数增大,N/V先增大后降低;随碳化温度上升,N/V不断增大;随氮化温度上升,N/V先增大后下降。当氮化温度增加后,氮化率为先上升后下降,最优氮化温度为1450℃;当氮化时间增加,氮化率逐渐上升并到达稳定,最优氮化时间为15 h。氮化钒铁的物相类型包括Fe相、NV相与少量的OV相。Fe在氮化钒铁内形成了不均匀分布的形态,大部分存在于氮化钒组织相内。  相似文献   

6.
以三氧化二钒、石墨粉、铁粉为原料,采用碳热还原氮化法在推板窑中制备生产氮化钒铁铁合金。采用X射线衍射(XRD)、场发射扫描电镜(FESEM)、能谱仪(EDS)和电感耦合高频等离子体(ICP)等分析手段对合金产品的物相组成、断面形貌和元素组成等进行分析。结果表明,在保持三氧化二钒和铁粉配比量不变的情况下,随着碳粉配比量的增加,碳粉配比对高钒合金中V、N含量影响不大,对Fe含量有一定的影响,而对低钒合金中N含量几乎没影响,反而对V、Fe含量影响很大;在反应过程中铁粉做为催化剂及黏结剂使用。  相似文献   

7.
为了从理论上揭示机械活化对铁氧化物碳热还原的影响规律,分析了机械活化铁氧化物的储能构成,并建立了铁氧化物机械力储能与碳热还原热力学之间的联系。研究结果表明:对铁氧化物碳热还原热力学产生显著影响的机械力储能形式是位错吉布斯自由能和无定形化吉布斯自由能;铁氧化物的碳热还原温度随机械力储能的增加而降低(其中Fe2O3的碳热还原温度降低不显著);另外,Fe3O4从按照1/4Fe3O4+CO=3/4Fe+CO2发生还原转为按照Fe3O4+CO=3FeO+CO2发生还原的转折温度随Fe3O4机械力储能的增加而线性下降。  相似文献   

8.
为研究铁酸锌配碳选择性还原分解过程,通过Factsage计算和试验研究相结合,分析铁酸锌配碳还原分解的热力学过程,讨论反应温度和配碳量对铁酸锌分解行为的影响。结果显示,铁酸锌配碳还原过程遵循逐级还原规律,控制C/O摩尔比0.6以下,温度低于900℃时,可实现铁酸锌的有效分解、ZnO过还原的抑制;采用固相反应法合成了结晶度好、纯度较高的铁酸锌,800℃时铁酸锌配碳还原分解为Fe_3O_4和ZnO,随着温度的升高,铁氧化物的逐级还原为FeO和Fe,ZnO被还原为Zn,试验结果与热力学计算结果基本一致。  相似文献   

9.
雷鸣  王春波  黄星智 《煤炭学报》2015,40(Z2):511-516
为探讨CO2气化反应在低氧气体积分数下对煤焦燃烧及燃烬过程的影响,利用热天平对比研究了大同煤焦在O2/N2/和O2/CO2气氛中的燃烧行为,主要探讨CO2气化反应对煤焦富氧燃烧特性的影响。实验结果表明,在5%氧气体积分数下,煤焦在O2/CO2气氛下的燃烧速率要低于O2/N2气氛下。当氧气体积分数降低到2%,且温度高于900 ℃时,在CO2气化反应的作用下,煤焦在O2/CO2气氛中的整体反应速率逐渐高于O2/N2气氛中的燃烧速率,使得燃烬提前。随着环境温度的升高,煤焦在O2/CO2和O2/N2气氛下的反应速率均有所增加,但在O2/CO2中增幅更显著。动力学分析显示,在5%氧气体积分数时,大同煤焦在O2/N2中的活化能要低于O2/CO2中。当氧体积分数减少到2%时,由于高温下煤焦的燃烧和气化反应同时进行,较高的气化反应活化能使得煤焦在O2/CO2中的整体反应活化能有明显增加。  相似文献   

10.
在感应炉中,空气气氛下,以粉煤灰为原料,木炭为还原剂,不同温度条件下对粉煤灰还原反应过程及合金进行研究。利用XRD,SEM-EDS技术对还原产物进行分析检测。结果表明,碳还原粉煤灰分为4个阶段:(1 373~1 673 K)Fe2O3和碳反应生成铁;(1 773~1 873 K)石英和碳反应生成SiC,莫来石发生分解并与碳反应生成SiC和Al2O3;(1 973~2 173 K)石英除生成较多SiC,还有少量Si生成,部分Al2O3和空气中的氮气生成Al5O6N,并最终分解成Al2O3和AlN;2 273 K氧化铝和SiC,C反应生成Al,Si,AlN和碳反应生成Al。高温下有气态的SiO,Al2O产生,造成部分铝硅损失。合金由3个相组成,3者相互混合存在,除含有较多Al,Si,Fe,Ca外,还含有部分SiC。在合适的配碳量下,Al2O3对SiC的生成有抑制作用。  相似文献   

11.
《矿冶》2015,(5)
某厂高钒低钙渣,含V 9.28%,Ca 1.85%,钒的主要存在矿物为钒铁尖晶石。试验结果表明,Na2CO3溶液对V2O5和Ca V2O6都有良好的浸出能力,具备处理低钙化焙烧钒渣的能力,确定采用低钙化焙烧—碳酸钠浸出对其进行处理。通过试验获得最佳焙烧条件为不添加Ca O,温度850℃,焙烧120min,此时钒浸出率达到77.2%。  相似文献   

12.
金属铁直接催化还原NO的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
苏亚欣  苏阿龙  成豪 《煤炭学报》2013,38(Z1):206-210
在水平陶瓷管反应器中对铁丝网卷直接催化还原NO的特性进行实验研究,于-300~-1 100 ℃对还原性气体CO、氧化性气体O2,CO2以及模拟烟气等气氛条件下的NO脱除效率进行测试,并对铁丝反应后表面组分变化特点进行X光衍射(XRD)分析。结果表明,金属铁具有非常高效的直接催化还原NO的作用。在温度高于700 ℃、N2气氛中,铁直接催化还原NO的效率超过90%。CO有利于铁的氧化物还原为金属铁,进一步提高了铁直接催化还原NO的效率;而O2能将金属铁氧化为Fe2O3,降低了铁直接催化还原NO的效率;CO2气体的影响相对较小。当温度达到950 ℃后,在模拟烟气(含16.8%CO2,2% O2)条件下,铁丝网和4.01%的CO即可达到90%以上的NO脱除效率。  相似文献   

13.
针对V_2O_5直接制备氮化钒铁工艺,采用TG-DSC和扫描电子显微镜(SEM)表征分析了体系反应过程及微观组织与元素分布,并分析了各影响因素对产物含氮量的影响。结果表明,670℃左右,碳还原V_2O_5的反应开始显著发生,1 000℃以上时,碳化反应开始发生,温度达1 200℃左右,开始出现氮化反应。反应温度、保温时间和配碳系数等因素对氮化钒铁含氮量均有较明显的影响。较适宜的制备工艺参数为:高温反应温度1 400℃、保温2h、配碳系数0.35,在该条件下制得的氮化钒铁含氮量可达11.26%,合金中其它元素含量分别为钒46.31%、铁36.87%、碳1.21%、硅1.98%、铝1.94%,符合GB/T30896-2014标准。SEM结果表明,利用V_2O_5直接制备氮化钒铁,铁主要以夹杂形式均匀分布在氮化钒铁主相间,且氮、钒、铁三种主元素的分布较均匀。  相似文献   

14.
王贲  苏胜  孙路石  胡松  周英彪  向军 《煤炭学报》2012,37(10):1743-1748
以山西褐煤为样品在固定床反应器上研究O2/CO2燃烧方式下NO的生成特性,分析了CO2,CO体积分数变化对于煤焦NO异相还原的影响。研究结果表明:与O2/N2气氛相比,O2/CO2燃烧条件下,煤粉NO的排放能够被有效抑制;O2/CO2气氛下挥发分N向NO的转化明显被抑制,而焦炭N向NO转化的抑制作用较弱;O2体积分数的升高对焦炭N向NO转化有明显的促进作用;适量CO2的存在对于煤焦-NO异相还原反应有明显促进作用,CO2体积分数过高则会抑制CO- NO还原反应的进行;CO的加入对NO还原效果明显,在CO体积分数为0.5%时NO还原效率最高,CO体积分数继续升高,还原效果有所减弱。  相似文献   

15.
本文将微波加热与铌酸铁碳热还原特性进行结合,探究铌酸铁在微波场中的还原反应等温动力学,通过分析微波升温至不同温度后的铌酸铁碳热还原产物,确定了不同温度下的还原反应步骤及还原产物微观样貌,并且通过热重分析及41中动力学模型函数对比拟合确定微波场中铌酸铁的反应机理函数,确定了其温度和反应速率的关系式。研究结果表明:微波加热下的铌酸铁的还原步骤为Nb2O5→Nb02→Nbc,微观组织样貌以球体或长方体的形式存在,通过动力学分析可知,微波场中铌酸铁碳热还原的表观活化能为134.6KJ/mol,反应模型为收缩球体模型:。  相似文献   

16.
在压力场下从石煤中浸取钒和浸出渣综合利用   总被引:2,自引:0,他引:2  
本文对贵州某地石煤进行了加压酸浸提钒实验研究。在压力场条件下,考察了反应时间、硫酸浓度、反应温度、液固比、添加剂(FeSO4)浓度对钒浸出率的影响,同时进行了两段逆流浸出实验。结果表明钒浸出率可达90%以上。浸出液经过废酸回收、还原、调整pH值等预处理后,采用溶剂萃取的方法能够有效地分离和富集钒,钒萃取率可达98.1%,反萃率为99.14%;用氨水沉淀反萃液中的钒,得到的NH4VO3在550℃下煅烧3h即可产出合格的粉状V2O5。浸出渣可制成建筑材料,全流程钒回收率为85%左右,资源综合利用率大于85%。  相似文献   

17.
汤云  袁蝴蝶  尹洪峰  帅航  辛亚楼  赖鹏辉 《煤炭学报》2016,41(12):3136-3141
煤气化炉渣是煤炭气化过程产生的固体废弃物。选取5种煤气化炉渣作为研究对象,在分析其化学和显微结构后,将炉渣分别在1 350~1 500℃进行碳热还原氮化,并对氮化产物的物相组成和显微结构进行表征。结果表明:1 5种无定性炉渣的化学结构均可描述为Si O4四面体与Al O4四面体相互连接的架状结构;2炉渣中的玻璃相呈规则球体状,无定性碳呈多孔海绵、长带或长片状;3 5种炉渣经碳热还原氮化反应均可合成出Ca-α-Si Al ON粉体,且Ca-α-Si Al ON的形成过程一致;4炉渣氮化产物中杂质相的产生与炉渣的化学组成中Ca O,Si O2,Al2O3和C的相对含量密切相关;5在氮化过程中,炉渣中玻璃球体发生表面粗糙、多孔、空心等形态的变化,这些变化在一定程度上反映出炉渣的氮化进程。  相似文献   

18.
对湖北某黏土型钒矿进行了常压酸浸提钒工艺试验研究,依据钒矿性质,确定使用1#药剂和2#药剂进行提钒试验,并依次考察了反应时间、反应温度、液固比、1#药剂用量、2#药剂用量对钒浸出率的影响及萃取、反萃取净化沉钒条件试验。最终在最优工艺条件下,钒产品达到了YB/T 5304-2006冶金V2O5 98牌号标准。  相似文献   

19.
湖北通山石煤钒矿选矿预富集探索研究   总被引:1,自引:1,他引:0  
通山石煤中的钒主要赋存在云母和碳质物中,经过选矿试验研究,焙烧脱碳的石煤在pH为10的碱性矿浆中,以Pb(NO3)2同时作为云母的活化剂和石英的抑制剂,油酸钠为捕收剂,加入六偏磷酸钠抑制方解石,经一次粗选、一次扫选浮选试验流程,可以得到V2O5品位1.231%、回收率64.67%的钒精矿。试验提高了石煤中V2O5含量,降低了铁矿物和方解石这两种主要酸耗物的含量,节省了浸出成本。  相似文献   

20.
通山石煤中的钒主要赋存在云母和碳质物中,经过选矿试验研究,焙烧脱碳的石煤在pH为10的碱性矿浆中,以Pb(NO3)2同时作为云母的活化剂和石英的抑制剂,油酸钠为捕收剂,加入六偏磷酸钠抑制方解石,经一次粗选、一次扫选浮选试验流程,可以得到V2O5品位1.231%、回收率64.67%的钒精矿。试验提高了石煤中V2O5含量,降低了铁矿物和方解石这两种主要酸耗物的含量,节省了浸出成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号