首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microfiltration (MF) is a membrane process that can separate casein micelles from milk serum proteins (SP), mainly beta-lactoglobulin and alpha-lactalbumin. Our objective was to develop a multistage MF process to remove a high percentage of SP from skim milk while producing a low concentration factor retentate from microfiltration (RMF) with concentrations of soluble minerals, nonprotein nitrogen (NPN), and lactose similar to the original skim milk. The RMF could be blended with cream to standardize milk for traditional Cheddar cheese making. Permeate from ultrafiltration (PUF) obtained from the ultrafiltration (UF) of permeate from MF (PMF) of skim milk was successfully used as a diafiltrant to remove SP from skim milk before cheese making, while maintaining the concentration of lactose, NPN, and nonmicellar calcium. About 95% of the SP originally in skim milk was removed by combining one 3 x MF stage and two 3 x PUF diafiltration stages. The final 3 x RMF can be diluted with PUF to the desired concentration of casein for traditional cheese making. The PMF from the skim milk was concentrated in a UF system to yield an SP concentrate with protein content similar to a whey protein concentrate, but without residuals from cheese making (i.e., rennet, culture, color, and lactic acid) that can produce undesirable functional and sensory characteristics in whey products. Additional processing steps to this 3-stage MF process for SP removal are discussed to produce an MF skim retentate for a continuous cottage cheese manufacturing process.  相似文献   

2.
Mozzarella cheese was made from buffalo milk (6% fat) or from partially skimmed buffalo milk (2 and 4% fat) with 0.5 and 1% denatured whey protein. Adding whey protein to buffalo milk decreased rennet coagulation time and curd tension whereas increased curd synaeresis. Addition of whey protein to cheese milk increased the acidity, total solids, ash, salt, salt in moisture, also some nitrogen fractions. The meltability and oiling‐off values increased but the calcium values of mozzarella cheese decreased. The sensory properties of low fat mozzarella cheese were improved by addition of whey protein to the cheese milk.  相似文献   

3.
嗜酸乳杆菌发酵生产低脂干酪凝乳工艺的优化   总被引:1,自引:1,他引:0  
以脱脂乳为原料,采用嗜酸乳杆菌发酵进行预酸化,对其生产的低脂干酪凝乳工艺条件进行了研究。实验选取凝乳pH、氯化钙添加量、凝乳酶添加量、凝乳温度4个影响因素,以干酪产率、乳清中非脂乳固体物质残留量、嗜酸乳杆菌活菌数为指标,采用L9(34)正交实验进行优化。结果表明,凝乳的最佳工艺参数为凝乳pH6.0,氯化钙添加量0.02%(w/w),凝乳酶添加量0.01%(w/w,酶活20000u/g),凝乳温度35℃,以此条件生产的低脂干酪脂肪含量小于5%,干酪产率29.41%,乳清中非脂乳固体物质残留量5.66%,嗜酸乳杆菌活菌数在109cfu/mL以上。  相似文献   

4.
Cheese yield mainly depends on the amount and proportion of milk constituents; however, genetic variants of the proteins present in milk may also have an important effect. The objective of this research was to study the effect of the variants A and B of β-lactoglobulin (LG) on cheese yield using a model system consisting of skim milk powder fortified with different levels of a mixture containing α-lactalbumin and β-LG genetic variants (A, B, or A-B) in a 1:2 ratio. Fortified milk samples were subjected to pasteurization at 65°C for 30 min. Miniature cheeses were made by acidifying (pH = 5.9) fortified milk and incubating with rennet for 1 h at 32°C. The clot formed was cut, centrifuged at 2,600 × g for 30 min at 20°C and drained for determining cheese yield. Cheese-yielding capacity was expressed as actual yield (grams of cheese curd per 100 g of milk) and dry weight yield (grams of dried cheese curd per 100 g of milk). Free-zone capillary electrophoresis was used for determining β-LG A or B recovery in the curd during rennet-induced coagulation. The presence of β-LG variant B resulted in a significantly higher actual and dried weight cheese yield than when A or A-B were present at levels ≤0.675% of whey protein (WP) addition. Results of free-zone capillary electrophoresis allowed us to infer that β-LG B associates with the casein micelles during renneting, as shown by an increase in the recovery of this variant in the curd when β-LG B was added up to a maximum at 0.45% (equivalent to 0.675% WP). In general, actual or dried weight cheese yield increased as WP addition was increased from 0.225 to 0.675%. However, when WP addition ranged from 0.675 to 0.90%, a drastic drop in cheese yield was observed. This behavior may be because an increase in the aggregation of casein micelles with a concomitant inclusion of whey protein in the gel occurs at low levels of WP addition, whereas once the association of WP with the casein micelles reach a saturation point at addition levels higher than 0.675%, rearrangements of the gel network result in larger whey expulsion and syneresis. This knowledge is expected to be useful to maximize cheese yield and optimize processing conditions during cheese and cheese analogs manufacturing.  相似文献   

5.
《Journal of dairy science》2019,102(12):10867-10876
Donkey milk is characterized by low contents of total solids, fat, and caseins, especially κ-casein, which results in formation of a very weak gel upon renneting. The objective of this study was to evaluate the effect of fortification of donkey milk with microbial transglutaminase (MTGase) for cheesemaking in relation to different enzyme addition protocols (patterns, PAT). Four independent trials were performed using MTGase (5.0 U/g of milk protein) according to the following experimental patterns: control (no MTGase addition); MTGase addition (40°C) 15 min before starter inoculation (PAT1); addition of MTGase to milk simultaneously with starter culture (40°C) (PAT2); and MTGase addition simultaneously with rennet (42°C) in acidified milk (pH 6.3) (PAT3). Evolution of pH during acidification, cheesemaking parameters, and proximal composition and color of cheese at 24 h were recorded. The protein fractions of cheese and whey were investigated by urea-PAGE and sodium dodecyl sulfate-PAGE. Addition of MTGase had no significant effect on moisture, protein, fat, or cheese yield. The addition of MTGase with rennet (PAT3) improved curd firmness compared with the control. Among the different patterns of MTGase addition, PAT3 reduced gel formation time, time between rennet addition and cheese molding, and weight loss of cheese at 24 h. The PAT3 treatment also resulted in the lowest lightness and highest yellowness color values of the cheese. Sodium dodecyl sulfate-PAGE of cheeses revealed that MTGase modified the protein pattern in the high-molecular-weight zone (range 37–75 kDa) compared with the control. Of the MTGase protocols, PAT3 showed better casein retention in cheese, as confirmed by the lanes of α- and β-caseins in the electropherogram of the whey, which was subtler for this protocol. In conclusion, MTGase may be used in cheese production from donkey milk to improve curd firmness; MTGase should be added simultaneously with the rennet.  相似文献   

6.
This three-part study was designed to determine aflatoxin M recovery from pasteurized and/or stored cow's milk. (a) Aflatoxin M was added to samples of raw Holstein milk at a concentration of 2.0 mug/liter. Half of each sample then was pasteurized at 63 C for 30 min, and both raw and pasteurized portions were stored at 4 C up to 17 days. (b) Samples of raw milk, pasteurized (77 C, 16 s) skim milk, dry cottage cheese curd, and cottage cheese whey were taken from a commercial operation in an area in which natural contamination had been encountered. (c) Milk from a cow dosed with aflatoxin B1 was stored frozen (-18 C) in bulk and in assay-size sample containers for 120 days. Aflatoxin M was recovered completely after either storage or pasteurization in (a) and (b). In (c), a recovery deficiency was detectable after 68 days of storage, which increased to 45% of the original value by 120 days. These observations differ from those of others in that loss of aflatoxin M was significant after pasteurization or storage of raw milk, totaling 87% loss after 120 days of frozen storage. Aflatoxin M partitioning between curd and whey in the preparation of cottage cheese agrees with more recent studies, but differs from previous reports. Three possible explanations for the differences are offered.  相似文献   

7.
The effects of milk protein fortification on the texture and microstructure of cottage cheese curd were evaluated. Protein powder (92.6% protein) was added to the skim milk at a level of 0.4% (w/w) to produce curds. Control curds with no protein powder addition were also produced. These curds were analysed for differences in yield, total solids, curd size, texture and structure. It was found that the addition of protein powder contributed to a significant yield increase, which can be attributed to increased water retention, with better curd size distribution. Control curds were firmer than the fortified curds and the structure showed less open-pore structure as revealed by electron microscopy. However, the addition of dressing masked the textural differences, and a sensory panel was unable to distinguish between cheeses produced from fortified milk and controls.  相似文献   

8.
Regular and ultrafiltered (UF; 1×, 2× and 4× concentrated) skim milk samples were treated with a range of enzymes including calf rennet, ficin and papain. The clotting properties, curd casein profiles and free amino acid (FAA) contents were determined. In general, UF milk samples coagulated faster and formed firmer curds irrespective of protein concentration. Furthermore, both ficin and papain had a more significant effect on proteolysis in curd formed from regular and 1× UF milk than on 2× or 4× UF milk. Cardoon extract and calf rennet had very similar clotting properties, although the former caused both the capillary electrophoresis profile of caseins and FAA measurements to show slightly more extensive hydrolysis in the curd. The results suggest that the UF process may cause structural changes to proteins or other milk constituents with a resultant change in clotting properties and proteolysis of the casein molecules.  相似文献   

9.
Cheddar cheese mixed starter cultures containing exopolysaccharide (EPS)-producing strains of Lactococcus lactis subsp. cremoris (Lac. cremoris) were characterized and used for the production of reduced-fat Cheddar cheese (15% fat). The effects of ropy and capsular strains and their combination on cheese production and physical characteristics as well as composition of the resultant whey samples were investigated and compared with the impact of adding 0.2% (w/v) of lecithin, as a thickening agent, to cheese milk. Control cheese was made using EPS-non-producing Lac. cremoris. Cheeses made with capsular or ropy strains or their combination retained 3.6–4.8% more moisture and resulted in 0.29–1.19 kg/100 kg higher yield than control cheese. Lecithin also increased the moisture retention and cheese yield by 1.4% and 0.37%, respectively, over the control cheese. Lecithin addition also substantially increased viscosity, total solid content and concentrating time by ultra-filtration (UF) of the whey produced. Compared with lecithin addition, the application of EPS-producing strains increased the viscosity of the resultant whey slightly, while decreasing whey total solids, and prolonging the time required to concentrate whey samples by UF. The amount of EPS expelled in whey ranged from 31 to 53 mg L−1. Retention of EPS-producing strains in cheese curd was remarkably higher than that of non-producing strains. These results indicate the capacity of EPS-producing Lac. cremoris for enhanced moisture retention in reduced-fat Cheddar cheese; these strains would be a promising alternative to commercial stabilizers.  相似文献   

10.
考察了不同酸度、钙质量分数调节后复原乳酶凝胶的质地特性,并对其质地变量进行了主成分分析。结果表明,不同工艺处理样品间的差异可以清晰地表现在两个新变量中。酸度、钙质量分数调整可对凝胶的表观黏度和持水力产生很大影响。此外,通过对照分析可以发现,不同前处理的复原乳样品具有与原料乳相近的凝胶特性。  相似文献   

11.
凝乳酶对超滤浓缩乳生产Quark干酪的影响   总被引:1,自引:0,他引:1  
采用每100g超滤乳中添加0、50、100、150、200、250μL六个水平的凝乳酶.研究了不同的凝乳酶添加量对Quark干酪组成、凝乳硬度、贮藏期产品感官品质和干酪中水溶性氮含量的影响.结果表明,当凝乳酶的添加量从0μL/100g增大到250μL/100g时,产品的水分含量上升了1.49%,粗产率和校正产率分别上升了1.42%和0.99%,固形物的回收率下降了3.5%,凝乳硬度从16,83g增大到40.84g.但干酪的苦味和水溶性氮含量,随着贮存期的延长和凝乳酶用量的增加而增大.  相似文献   

12.
Reduced fat milks were pasteurized, for 15 s, at temperatures ranging from 72 to 88°C to give levels of whey protein denaturation varying from ˜ 3 to 35%. The milks were converted into reduced fat cheddar cheese (16–18% fat) in 500 litre cheese vats; the resultant cheese curds were milled at pH values of 5.75 and 5.35. Raising the milk pasteurization temperature resulted in impaired rennet coagulation properties, longer set-to-cut times during cheese manufacture, higher cheese moisture and moisture in the non-fat cheese substance, lower levels of protein and calcium and lower cheese firmness. Increasing the pH at curd milling from 5.35 to 5.75 affected cheese composition and firmness, during ripening, in a manner similar to that of increasing milk pasteurization temperature. Despite their effects on cheese composition and rheology, pasteurization temperature and pH at curd milling had little influence on proteolysis or on the grading scores awarded by commercial graders during ripening over 303 days .  相似文献   

13.
The effects of using cold ultrafiltered (UF) retentates (both whole and skim milk) on the coagulation, yield, composition, and ripening of Parmesan cheese were investigated. Milks for cheese making were made by blending cold UF retentates with partially skimmed milk to obtain blends with 14.2% solids and a casein:fat ratio of 1.1. Cutting times, as selected by the cheese-maker, were approximately 15 and approximately 20 min for experimental and control milks, respectively. Storage modulus values at cutting were similar, but yield stress values were significantly higher in UF retentate standardized milks. Cheese yields were significantly higher in UF retentate standardized milks (approximately 12%) compared with control milk (cream removed) (approximately 7 to 8%). Significantly higher protein recoveries were obtained in cheeses manufactured using cold UF retentates. There were no differences in the pH and moisture contents of the cheeses prior to brining, and there was no residual lactose or galactose left in the cheeses. Using UF retentates resulted in a significant reduction in whey volume as well as a higher proportion of protein in the solids of the whey. Proteolysis, free fatty acids, and sensory properties of the cheeses were similar. The use of milk concentrated by cold UF is a promising way of improving the yield of Parmesan cheese without compromising cheese quality. The question remaining to be answered by the cheesemaker is whether it is economical to do so.  相似文献   

14.
Buffalo milk contains (40–60 %) more protein, fat and calcium than cows’ milk. These constituents were enhanced by ultrafiltration (UF) of cows’ milk to give a product with similar levels to those found in the buffalo milk. Mozzarella-type curd was made from buffalo, cows’ and UF cows’ milk to compare the overall curd yield and quality. The curd yield on both dry and wet weight basis, curd moisture content and overall curd fat retention were found to be higher in the UF cows’ milk than for either the buffalo or the cows’ milk preparations. The minimum whey fat losses occurred in the UF cows’ curd when compared to the cows’ and the buffalo curd. The whey protein losses were found to be higher in the UF cows’ curd than those for the buffalo and the cows’ curds. The total mineral content of the curd was also higher in the UF cows’ milk than that found in either the buffalo or the cows’ milk. SEM micrographs showed that casein micelles sizes were different in the two different types of milk. Casein micelles were also observed to be deformed in the UF cows’ milk samples. UF cows’ milk contained higher amounts of both the αs1- and αs2-casein moieties than either the buffalo or the cows’ milk. Buffalo milk was found to contain a higher concentration of β-casein than either the UF cows’ or untreated cows’ milk samples. Gel strength was found to be higher in the resultant buffalo curd than for curds made from either native cows’ milk or those made from UF cows’ milk. The mineral distribution was also different in the three different types of bovine milk, measured by energy-dispersive X-ray (EDX) analysis. Differences in the curd quality observed between the buffalo and the cows’ milk appear to result from the differences in casein composition and overall micelle structure, rather than casein concentration alone.  相似文献   

15.
《Journal of dairy science》1988,71(9):2342-2348
A pilot-scale plate and frame UF system was used to fractionate Cheddar cheese whey and study the effects of different commercial milk coagulants on permeate flux. Coagulants used in this study were calf rennet, Mucor pusillus protease, and Mucor miebei protease. Whey UF performance studies were conducted at a commercial Cheddar cheese plant and at Cornell under controlled conditions. Ultrafiltration was done in a continuous mode and initial concentration factor was set at 2× to simulate the first stage of a multistage whey UF system.Permeate flux decline was rapid in the first 30 min of UF for all wheys studied. More important, the type of milk coagulant used in cheese making had a profound effect on permeate flux during whey UF. No differences in the gross composition of the various wheys were correlated with differences in permeate flux. The highest permeate flux was measured for UF of whey produced during manufacture of Cheddar cheese using coagulant derived from Mucor pusillus. Lowest permeate flux was measured for UF of whey produced during manufacture of Cheddar cheese using calf rennet. Whey from cheese manufactured using Mucor miebei coagulant had flux performance intermediate to Mucor pusillus and calf rennet. The impact of milk coagulants on whey UF process efficiency should be considered by cheese makers.  相似文献   

16.
Whey was employed as a reconstituting medium for dried milk used for cheese making.Ras cheese was made from fresh milk; whey was collected and dried skim milk was used to prepare a reconstituted milk with 20% total solids. Ras cheese was made from it and this process was repeated a further three times.The addition of whey was beneficial in reducing, by 50%, the time necessary to raise the acidity of milk to make it suitable for rennet action. The time necessary to make it suitable for whey removal was also reduced by 50%. Consequently, the time required for pressing was only 8 h, instead of 16 h. Generally, the use of whey is considered to be a better process for Ras cheese making. In addition to the utilisation of whey, it produced a good and acceptable cheese. The cheese was manufactured within a shorter time than cheese made with fresh milk.  相似文献   

17.
Vitamin D is an essential vitamin that is synthesized when the body is exposed to sunlight or after the consumption of fortified foods and supplements. The purpose of this research was to increase the retention of vitamin D(3) in Cheddar cheese by incorporating it as part of an oil-in-water emulsion using a milk protein emulsifier to obtain a fortification level of 280 IU/serving. Four oil-in-water vitamin D emulsions were made using sodium caseinate, calcium caseinate, nonfat dry milk (NDM), or whey protein. These emulsions were used to fortify milk, and the retention of vitamin D(3) in cheese curd in a model cheesemaking system was calculated. A nonemulsified vitamin D(3) oil was used as a control to fortify milk. Significantly more vitamin D(3) was retained in the curd when using the emulsified vitamin D(3) than the nonemulsified vitamin D(3) oil (control). No significant differences were observed in the retention of vitamin D(3) when emulsions were formulated with different emulsifiers. Mean vitamin D(3) retention in the model system cheese curd was 96% when the emulsions were added to either whole or skim milk compared with using the nonemulsified oil, which gave mean retentions of only 71% and 64% when added to whole and skim milk, respectively. A similar improvement in retention was achieved when cheese was made from whole and reduced-fat milk using standard manufacturing procedures on a small scale. When sufficient vitamin D(3) was added to produce cheese containing a target level of approximately 280 IU per 28-g serving, retention was greater when the vitamin D(3) was emulsified with NDM than when using nonemulsified vitamin D(3) oil. Only 58±3% of the nonemulsified vitamin D(3) oil was retained in full-fat Cheddar cheese, whereas 78±8% and 74±1% were retained when using the vitamin D(3) emulsion in full-fat and reduced-fat Cheddar cheese, respectively.  相似文献   

18.
Measurement of estrogens in cow's milk, human milk, and dairy products   总被引:2,自引:0,他引:2  
Free natural estrogens in raw and commercial whole milk were quantitated by radioimmunoassay. The ranges of concentration of estrone, estradiol 17-beta, and estriol were 34 to 55, 4 to 14, and 9 to 31 pg/ml. Proportions of active estrogens (estrone and estradiol) in the fat phases of milk by radioactive tracer on separated milk were 80% and 65%. These findings were supported by radioimmunoassay of skim milk and butter. Equilibrium dialysis of skim milk with hydrogen 3 labeled estrogens showed that 84 to 85% of estrone and estradiol and 61 to 66% of estriol were protein bound. Whey proteins demonstrated a greater binding capacity than casein. This result was confirmed by radioimmunoassay of dry curd cottage cheese and whey. The concentrations in curd were 35, 11, and 6 pg/g. In whey they were 4, 2, and 3 pg/ml. The quantity of active estrogens in dairy products is too low to demonstrate biological activity. Butter was highest with concentrations of 539, 82, and 87 pg/g. Human colostrum demonstrated a maximum concentration of 4 to 5 ng/ml for estrone and estriol and about .5 ng/ml for estradiol. By the 5th day postpartum, they decreased to become similar to cow's milk.  相似文献   

19.
The global production of sheep milk is growing, and the main industrial use of sheep milk is cheese making. The Spanish Churra sheep breed is one of the most important native dairy breeds in Spain. The present study aimed to estimate genetic parameters for a wide range of traits influencing the cheese-making ability of Churra sheep milk. Using a total of 1,049 Churra ewes, we studied the following cheese-making traits: 4 traits related to milk coagulation properties (rennet coagulation time, curd-firming time, and curd firmness at 30 and 60 min after addition of rennet), 2 traits related to cheese yield (individual laboratory cheese yield and individual laboratory dried curd yield), and 3 traits measuring curd firmness over time (maximum curd firmness, time to attain maximum curd firmness, and syneresis). In addition, a list of milk traits, including the native pH of the milk and several milk production and composition traits (milk yield; the fat, protein, and dried extract percentages; and the somatic cell count), were also analyzed for the studied animals. After discarding the noncoagulating samples (only 3.7%), data of 1,010 ewes were analyzed with multiple-trait animal models by using the restricted maximum likelihood method to estimate (co)variance components, heritabilities, and genetic correlations. In general, the heritability estimates were low to moderate, ranging from 0.08 (for the individual laboratory dried curd yield trait) to 0.42 (for the fat percentage trait). High genetic correlations were found within pairs of related traits (i.e., 0.93 between fat and dried extract percentages, ?0.93 between the log of the curd-firming time and curd firmness at 30 min, 0.70 between individual laboratory cheese yield and individual laboratory dried curd yield, and ?0.94 between time to attain maximum curd firmness and syneresis). Considering all the information provided here, we suggest that in addition to the current consideration of the protein percentage trait for improving cheese yield traits, the inclusion of the pH of milk as a measured trait in the Churra dairy breeding program would represent an efficient strategy for improving the cheese-making ability of milk from this breed.  相似文献   

20.
The effects of milk protein genetic polymorphisms on the rennet and acid coagulation properties of milk after protein standardisation were investigated. Skim milk samples were adjusted to a protein concentration of 6.07 ± 0.06% by ultrafiltration (UF) before evaluating rennet coagulation and acid coagulation properties. Only the β-lactoglobulin (β-LG) genotypes influenced the rennet-clotting time before standardisation for the total protein concentration by UF; however, this effect was confounded with the β-LG concentration. After UF-concentration, a similar protein concentration between the samples was achieved in the retentate, then the rennet clotting time and rennet curd firmness at 30 min were significantly influenced by both the κ-casein (κ-CN) and β-LG genotypes. κ-CN genotypes significantly influenced the acid coagulation properties of both skim milk and retentate. Variations in the concentration of milk proteins (mostly αS2-CN-12P) explained most of the differences in the rennet and acid coagulation properties of milk after protein standardisation by UF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号