共查询到20条相似文献,搜索用时 15 毫秒
1.
Xianming Wang Toshiya Hironaka Eiji Hayashi Chisa Yamada Hitoshi Naito Go Segami Yoko Sakiyama Yoshikazu Takahashi Koichi Kibe 《Journal of power sources》2007
As a sequence work to investigate the performance-degradation mechanism of an aged commercial laminated lithium-ion cell experiencing 4350-cycle charge–discharge in a simulated low-Earth-orbit (LEO) satellite operation, we performed the surface characterization of LiCoO2 cathode and graphite anode by Fourier transform infrared-Attenuated total reflection (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analysis in this work. Overall, the graphite anode had a larger change in surface chemistry than that of the LiCoO2 cathode. Except the common surface components, we detected Co metal at the aged graphite surface in the first time. This Co metal deposition was believed to originate from Co2+ dissolution from LiCoO2 cathode during prolonged cycling, and detrimental to structure stability of LiCoO2 cathode which was a main cause of cell capacity loss. The amount of surface-film component was also estimated by FTIR analysis. Though the total amount of surface film increased, the organic (inorganic) surface film decreased (increased) with prolonged cycling. 相似文献
2.
Masatoshi Uno Keita OgawaYasuo Takeda Yoshitsugu SoneKoji Tanaka Makoto MitaHirobumi Saito 《Journal of power sources》2011,196(20):8755-8763
A lithium-ion battery was developed using off-the-shelf pouch cells and launched with a small scientific satellite “REIMEI.” The cells were potted with polyurethane or epoxy resin to protect the battery from vacuum in space. Preliminary experimental test results of pouch cells potted in a soft aluminum cap suggested that the cells tended to swell in vacuum, although they had been reinforced with the resins. Bread board models (BBMs), in which pouch cells were potted with resins in a hard aluminum case, were fabricated for cycle life performance tests in the laboratory. The test results indicated that the performance of epoxy-potted BBM was superior to that of the polyurethane-potted BBM. The measured cell resistance implied that the electrolyte solution leaked through the polyurethane resin, resulting in premature deterioration. The epoxy resin was used for the flight battery. The end-of-discharge-voltage (EoDV) trend of the flight battery on orbit was compared with the laboratory test results corrected based on a post-launch cycle test using a fresh cell. The corrected EoDV trend in the laboratory was in good agreement with the on-orbit trend for the early cycle period, indicating that the on-orbit battery was not inadvertently affected by conditions in space. 相似文献
3.
4.
Michael Geis Stephan Herrmann Sebastian Fendt Hyeondeok Jeong Christian Lenser Norbert H. Menzler Hartmut Spliethoff 《International Journal of Hydrogen Energy》2018,43(45):20417-20427
Feeding solid oxide fuel cells (SOFCs) with gas from biomass gasification is promising with regard to highly efficient power generation. But it is also intricate since biogenic contaminants are harmful to state-of-the-art anode materials. In this work the influence of phenol as a biogenic model contaminant on the performance of single solid oxide fuel cells was studied under realistic conditions. For this purpose Ni/YSZ anode supported cells were operated with simulated bio-syngas, applying an electrical load of 0.34 A/cm2. Over a duration of several hundreds of hours phenol was periodically added to the fuel gas. The tests showed that for the lowest concentration of phenol no accelerated degradation could be observed regarding cell potential and electrical impedance measurements, but disintegration of the Ni/YSZ support took place. Metal dusting of the anode support was found to be the most important mechanism of degradation. 相似文献
5.
Tae-Hyung Cho Masanao Tanaka Yuka Kondo Tatsuo Nakamura 《Journal of power sources》2010,195(13):4272-241
A new type composite nonwoven separator has been developed by combining a polyacrylonitrile (PAN) nano-fiber nonwoven and ceramic containing polyolefin nonwoven. The physical, electrochemical and thermal properties of the separator were investigated. The separator has mean pore size of about 0.8 μm as well as narrow pore-size distribution. Besides, the separator possesses higher porosity and air permeability than a conventional microporous membrane separator. The separator showed tensile strength of 46 N 5 cm−1 at 10% elongation. Any internal short circuit was not observed for cells with the separator during charge-discharge test, and the cells showed stable cycling performance. Moreover, the cells showed better rate capabilities than cells with the conventional one. On a hot oven test at 150 °C, the composite nonwoven separator showed better thermal stability than the conventional one. In addition, internal short circuit by thermal shrinkage of separator was not observed for a cell with the separator at 150 °C for 1 h. 相似文献
6.
Synthesized yttrium aluminum garnet (YAG) sol was coated on the surface of the LiCoO2 cathode particles by an in situ sol–gel process, followed by calcination at 923 K for 10 h in air. Based on XRD, TEM, and ESCA data, a compact YAG kernel with an average thickness of ∼20 nm was formed on the surface of the core LiCoO2 particles, which ranged from ∼90 to 120 nm in size. The charge–discharge cycling studies for the coated materials suggest that 0.3 wt.% YAG-coated LiCoO2 heated at 923 K for 10 h in air, delivered a discharge capacity of 167 mAh g−1 and a cycle stability of about 164 cycles with a fading rate of 0.2 mAh cycle−1 at a 0.2C-rate between 2.75 and 4.40 V vs. Li/Li+. The differential capacity plots revealed that impedance growth was slower for YAG surface treated LiCoO2, when cells were charged at 4.40 V. DSC results exemplified that the exothermic peak at ∼468 K corresponded to the release of much less oxygen and greater thermal-stability. 相似文献
7.
Matthieu DubarryCyril Truchot Mikaël CugnetBor Yann Liaw Kevin GeringSergiy Sazhin David JamisonChristopher Michelbacher 《Journal of power sources》2011,196(23):10328-10335
Evaluating commercial Li-ion batteries presents some unique benefits. One of them is to use cells made from established fabrication process and form factor, such as those offered by the 18650 cylindrical configuration, to provide a common platform to investigate and understand performance deficiency and aging mechanism of target chemistry. Such an approach shall afford us to derive relevant information without influence from processing or form factor variability that may skew our understanding on cell-level issues. A series of 1.9 Ah 18650 lithium ion cells developed by a commercial source using a composite positive electrode comprising {LiMn1/3Ni1/3Co1/3O2 + LiMn2O4} is being used as a platform for the investigation of certain key issues, particularly path-dependent aging and degradation in future plug-in hybrid electric vehicle (PHEV) applications, under the US Department of Energy's Applied Battery Research (ABR) program. Here we report in Part I the initial characterizations of the cell performance and Part II some aspects of cell degradation in 2C cycle aging. The initial characterizations, including cell-to-cell variability, are essential for life cycle performance characterization in the second part of the report when cell-aging phenomena are discussed. Due to the composite nature of the positive electrode, the features (or signature) derived from the incremental capacity (IC) of the cell appear rather complex. In this work, the method to index the observed IC peaks is discussed. Being able to index the IC signature in details is critical for analyzing and identifying degradation mechanism later in the cycle aging study. 相似文献
8.
9.
Model validation and performance analysis of regenerative solid oxide cells: Electrolytic operation 总被引:1,自引:0,他引:1
The use of regenerative, high temperature solid oxide cells (SOCs) as energy storage devices has the potential for round-trip efficiencies that are competitive with other storage technologies. The focus of the current study is to investigate regenerative SOC operation (i.e., working in both fuel cell and electrolysis modes) through a combination of modeling and numerical simulation. As an intermediate step, this paper focuses on the electrolysis mode and presents a dynamic cell model that couples the reversible electrochemistry, reactant chemistry, and the thermo-fluidic phenomena inside a cell channel. The model is calibrated and validated using available experimental and numerical data for button cells, single cells, and multi-cell stacks supplied with either steam or syngas. Parametric studies are also performed to show how the investigated parameters affect model validity. The results show that the present model can accurately simulate the electrolytic cell behavior, especially in the low current range, which is a favored operating point in practical systems. It is observed that improvements in stack-level model precision require further investigation to better represent the contact resistance of the stack components and to improve the estimation of the activation polarization throughout the operating envelope. It is also concluded that the CO2 electrochemical reaction can be neglected when the concentration of the steam supplied to the cell is high enough to support the water–gas shift reaction. 相似文献
10.
The need for electrical energy storage (EES) is being driven by the deployment of increasing amounts of intermittent renewable energy resources. In addition to their fuel flexibility, high efficiency, scalability, and long-term cost outlook, reversible (regenerative) solid oxide cell (rSOC) systems have the potential for round-trip efficiencies competitive with the other available energy storage technologies. Accordingly, the focus of the current study is to investigate modeling methods for high temperature rSOCs in order to facilitate future endeavors related to establishing optimal operating conditions and system designs. Previously developed solid oxide fuel cell (SOFC) and solid-oxide electrolytic cell (SOEC) models are integrated to form a general rSOC model. The model is first calibrated and validated based on the available experimental data in the extant literature. The validation results show that the fitting parameters extracted from the calibration study can precisely simulate the cell behavior under various operating conditions. The effects of key operating parameters, such as temperature, gas composition and fuel utilization, on the voltage–current density performance characteristic and thermoneutral voltage are then investigated. It is also observed that the total electrochemical losses of the cell can be significantly different in each operating mode (fuel cell and electrolyzing) under certain operating conditions. Advantages of pressurized operation on thermal management are also discussed. 相似文献
11.
Junji Xuan Likun Xu Shuangfeng Bai Ting Zhao Yonglei Xin Guodong Zhang Lili Xue Li Li 《International Journal of Hydrogen Energy》2021,46(44):22920-22931
The effects of temperature on corrosion behavior, wettability, and surface conductivity of 304 stainless steel (SS304) in simulated cathode environment of proton exchange membrane fuel cells (PEMFC) are investigated systematically using electrochemical tests and surface analyses. The results indicate that although the corrosion resistance of SS304 is decreased with the rising of solution temperature, the current density of SS304 at the working potential in the simulated PEMFC cathode environment can still meet the 2025 U.S. Department of Energy (DOE) technical target (icorr < 1 μA cm?2). Meanwhile, the surface wettability and ICR of SS304 samples after potentiostatic polarization show a continuous increase with the rise of the simulated solution temperature. The surface conductivity of SS304 both before and after polarization cannot reach the 2025 DOE technical target (<0.01 Ω cm2) and needs to be improved by surface modification. 相似文献
12.
In this paper we report the results of chemical-physical investigation performed on ternary room temperature ionic liquid-lithium salt mixtures as electrolytes for lithium-ion battery systems. The ternary electrolytes were made by mixing N-methyl-N-propyl pyrrolidinium bis(fluorosulfonyl) imide (PYR13FSI) and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (PYR14TFSI) ionic liquids with lithium hexafluorophosphate (LiPF6) or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The mixtures were developed based on preliminary results on the cyclability of graphite electrodes in the IL-LiX binary electrolytes. The results clearly show the beneficial synergic effect of the two ionic liquids on the electrochemical properties of the mixtures. 相似文献
13.
The importance of MnOOH dispersion and interfacial contact between MnOOH nanowires and carbon black for the cathode of metal-air batteries has been clearly demonstrated from the textural, voltammetric, and electrochemical impedance spectroscopic (EIS) analyses. In comparing with the physically mixed composite, the MnOOH nanowires/XC-72 composite co-precipitated by hydrothermal synthesis shows much better performances of oxygen reduction in 1 M KOH, which is attributed to the higher active surface area resulting from the better dispersion of MnOOH and the smooth electron pathways resulting from the higher interfacial contact surface area between oxide and carbon nanoparticles within the hydrothermally co-precipitated MnOOH/XC-72 nanocomposites. The absence of diffusion responses in the low-frequency range of EIS spectra reveals no/minor oxygen-diffusion effect at low overpotentials (E ≥ −0.3 V vs. Ag/AgCl). 相似文献
14.
Three-dimensional earth-contact heat flows: A comparison of simulated and measured data for a buried structure 总被引:1,自引:0,他引:1
If renewable energy sources are to be successfully utilised within the built environment then accurate simulation tools have an important role to play. This paper addresses a very specific part of the overall simulation process: that of earth-contact heat transfer which can be the cause of significant modelling errors. Using a three-dimensional numerical model, simulation results are compared with experimental data for a test room. It has been shown that for this case, neglecting climatic conditions (e.g. snow and rain) causes discrepancies between measured and calculated temperatures. A sensitivity study has also shown that thermophysical properties (like the soil thermal conductivity) have to be accurately known. 相似文献
15.
Sangho Yoon Joongmyeon Bae Sangho Lee Thang V. Pham Sai P. Katikaneni 《International Journal of Hydrogen Energy》2012
Post-reforming experimental results for the complete removal of light hydrocarbons from diesel reformate are introduced in part I. In part II of the paper, an integrated diesel fuel processor is investigated for the stable operation of SOFCs. Several post-reforming processors have been operated to suppress both sulfur poisoning and carbon deposition on the anode catalyst. The integrated diesel fuel processor is composed of an autothermal reformer, a desulfurizer, and a post-reformer. The autothermal reforming section in the integrated diesel fuel processor effectively decomposes aromatics, and converts fuel into H2-rich syngas. The subsequent desulfurizer removes sulfur-containing compounds present in the diesel reformate. Finally, the post-reformer completely removes the light hydrocarbons, which are carbon precursors, in the diesel reformate. We successfully operate the diesel reformer, desulfurizer, and post-reformer as microreactors for about 2500 h in an integrated mode. The degradation rate of the overall reforming performance is negligible for the 2000 h, and light hydrocarbons and sulfur-containing compounds are completely removed from the diesel reformate. 相似文献
16.
Li[Ni0.8Co0.15Al0.05]O2 particles are modified with AlF3 as a new coating material. Even though the initial discharge capacity of the coated Li[Ni0.8Co0.15Al0.05]O2 is almost the same as that of the pristine material, the capacity retention and the thermal stability, in a highly oxidized state are both significantly improved. This effect is attributed to the thin AlF3 coating layer protecting the oxidized cathode particles from attack by hydrogen fluoride in the electrolyte. 相似文献
17.
Detailed experiments were designed to evaluate the function of load-shock treatment strategy (50 g COD/l; 3 days) for selective enrichment of acidogenic hydrogen (H2) producing consortia in comparison with untreated anaerobic consortia. Experiments performed in suspended-batch mode bioreactors for 520 days illustrated the relative efficiency of load-shock treated consortia in enhancing H2 production (16.64 mol/kg CODR) compared to untreated-parent consortia (3.31 mol/kg CODR). On the contrary, substrate degradation was higher with control operation (ξCOD, 62.86%; substrate degradation rate (SDR), 1.10 kg CODR/m3-day) compared to load-shock culture (52.33%; 0.78 kg CODR/m3-day). Fatty acid composition documented a shift in the metabolic pathway towards acetate formation after applying load-shock, which manifests higher H2 production. Microbial profiling documented a significant alteration in species composition of microbial communities after repeated load-shock applications specific to enrichment of Firmicutes which are favourable for H2 production. Dehydrogenase activity was stabilized with each re-treatment, signifying the adaptation inclination of the biocatalyst towards increased proton shuttling between metabolic intermediates, leading to higher H2 production. Voltammograms of load-shock treated cultures showed a marked shift in oxidation and reduction catalytic currents towards more positive and negative values respectively with increasing scan rate evidencing simultaneous redox-conversion reactions, facilitating proton gradient in the cell towards increased H2 production. Load-shock treatment facilitates direct cultivation of inoculums at higher substrate load without any chemical pretreatment. This study documented the feasibility of controlling microbial metabolic function by application of load-shock treatment either for preparing inoculum for startup of the reactor or to the reactor resident microflora (in situ) during operation whenever required to regain the process performance. 相似文献
18.
Vehicles with electric drive trains are currently the subject of intense discussion by society. The cost trends of the individual components in the electric drive train are a central aspect of the future market success of the different vehicle drive systems. 相似文献
19.
Solid-state storage of hydrogen is a possible breakthrough to realise the unique futures of hydrogen as a green fuel. Among possible methods, electrochemical hydrogen storage is very promising, as can be conducted at low temperature and pressure with a simple device reversibly. However, it has been overshadowed by the physical hydrogen storage in the literature, and thus, research efforts are not adequately connected to lead us in the right direction. On the other hand, electrochemical hydrogen storage is the basis of some other electrochemical power sources such as batteries, fuel cells, and supercapacitors. For instance, available hydrogen storage materials can build supercapacitors with exceptionally high specific capacitance in order of 4000 F g?1. In general, electrochemical hydrogen storage plays a substantial role in the future of not only hydrogen storage but also electrochemical power sources. There are some vague points which have obscured our understanding of the corresponding system to be developed practically. This review aims to portray the entire field and detect those ambiguous points which are indeed the key obstacles. It is clarified that different materials have somehow similar mechanisms for electrochemical hydrogen storage, which is initiated by hydrogen dissociation, surface adsorption and probably diffusing deep within the bulk material. This mechanism is different from the insertion/extraction of alkali metals, though battery materials look similar. Based on the available reports, it seems that the most promising material design for the future of electrochemical hydrogen storage is a class of subtly designed nanocomposites of Mg-based alloys and mesoporous carbons. 相似文献
20.
P. ManikandanM.V. Ananth T. Prem KumarM. Raju P. PeriasamyK. Manimaran 《Journal of power sources》2011,196(23):10148-10155
LiNi0.5Mn0.5O2, a promising cathode material for lithium-ion batteries, is synthesized by a novel solution-combustion procedure using acenaphthene as a fuel. The powder X-ray diffraction (XRD) pattern of the product shows a hexagonal cell with a = 2.8955 Å and c = 14.1484 Å. Electron microscopy investigations indicate that the particles are of sub-micrometer size. The product delivers an initial discharge capacity of 161 mAh g−1 between 2.5 and 4.6 V at a 0.1 C rate and could be subjected to more than 50 cycles. The electrochemical activity is corroborated with cyclic voltammetric (CV) and electrochemical impedance data. The preparative procedure presents advantages such as a low cation mixing, sub-micron particles and phase purity. 相似文献