首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers the plane stress problem of a cantilever functionally graded beam subjected to linearly distributed load. The material properties of the functionally graded beam are assumed to vary continuously through the thickness, according to a power-law distribution of the volume fraction of the constituents. First, the partial differential equation, which is satisfied by the stress functions for the axisymmetric deformation problem is derived. Then, stress functions are obtained by proper manipulation. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a functionally graded cantilever beam.  相似文献   

2.
The natural frequencies of vibration of a rotating pre-twisted functionally graded cantilever beam are investigated. Rotating cantilever beam with pre-twist made of a functionally gradient material (FGM) consisting of metal and ceramic is considered for the study. The material properties of the FGM beam symmetrically vary continuously in thickness direction from core at mid section to the outer surfaces according to a power-law form. Equations of motion for free vibration are derived using Lagrange’s equation and the natural frequencies are determined using Rayleigh–Ritz method. The effect of parameters such as the pre-twist angle, power law index, hub radius and rotational speed on the natural frequencies of rotating functionally graded pre-twisted cantilever beams are examined through numerical studies and comparison is made with the numerical results obtained using other methods reported in literature. The effect of coupling between chordwise and flapwise bending modes on the natural frequencies has also been investigated.  相似文献   

3.
《Composites Part B》2013,45(1):274-282
The plane stress problem of an orthotropic functionally graded beam with arbitrary graded material properties along the thickness direction is investigated by the displacement function approach for the first time. A general two-dimensional solution is obtained for a functionally graded beam subjected to normal and shear tractions of arbitrary form on the top and bottom surfaces and under various end boundary conditions. For isotropic case explicit solutions are given to some specific through-the-thickness variations of Young’s modulus such as exponential model, linear model and reciprocal model. The influence of different grade models on the stress and displacement fields are illustrated in numerical examples. These analytical solutions can serve as a basis for establishing simplified theories and evaluating numerical solutions of functionally graded beams.  相似文献   

4.
基于一种新修正偶应力理论建立了微尺度平面正交各向异性功能梯度梁模型。模型中包含两个材料尺度参数,因此能够分别描述在两个正交方向上由尺度效应带来的不同大小弯曲刚度增强。基于最小势能原理推导了平衡方程和边界条件,并以自由端受集中载荷作用的悬臂梁为例给出了弯曲问题的解析解。该梁模型的控制方程以及解的形式和经典梁模型是一致的,只是在刚度项中增加了一项和尺度效应有关的项。算例结果表明:采用本文模型所预测的梁挠度总是小于经典理论的结果,即捕捉到了尺度效应。尺度效应会随着梁几何尺寸的减小而增大,并在梁的几何尺寸远大于尺度参数时逐渐消失。  相似文献   

5.
This article presents a new elasticity solution for transversely isotropic, functionally graded circular plates subject to axisymmetric loads. It is assumed that the material properties vary along the thickness of a circular plate according to an exponential form. By extending the displacement function presented by Plevako to the case of transversely isotropic material, we derived the governing equation of the problem studied. The displacement function was assumed as the sum of the Bessel function and polynomial function to obtain the analytical solution of a transversely isotropic, functionally graded circular plate under different boundary conditions. As a numerical example, the influence of the graded variations of the material properties on the displacements and stresses was studied. The results demonstrate that the graded variations have a significant effect on the mechanical behavior of a circular plate.  相似文献   

6.
Modal behavior of a three-dimensional (3D) homogeneous and functionally graded (FG) cantilever beam is studied using the Rayleigh–Ritz (RR) method and the finite element method (FEM). The effect of Poisson’s ratio and material sampling point on the natural frequencies is further addressed using the FEM. The natural frequencies (first three) obtained using the RR method converge as the number of admissible shape functions increase. The natural frequencies (first 15) obtained using the FEM vary considerably with the material gradation, more so for the lower modes than for the higher modes. Poisson’s ratio significantly changes the torsional natural frequencies of the homogeneous and graded beams. Considerable change in the natural frequencies is seen for the linear graded beams whose material properties are sampled at the element centroid rather than at Gaussian integration points. This difference is easily observed for beams modeled using a coarse mesh rather than a fine mesh. The natural frequencies of the y   direction hyperbolic tangent beam with material nonhomogeneity parameter β=100β=100 matches well with those of the y direction bi-material beam. The natural frequencies of the power-law graded 3D cantilever beam obtained using the FEM matches closely with the 2D reference (Qian and Ching, 2004 [1]) solution obtained using the meshless local Petrov–Galerkin method.  相似文献   

7.
研究了正交各向异性功能梯度板的三维弯曲问题。假设材料参数沿板厚方向按同一函数规律变化,基于状态空间法,在板的上下表面作用机械载荷的情况下,获得了简支功能梯度平板弯曲问题的Peano-Baker 级数解。通过算例,验证了 Peano-Baker级数解的正确性,同时也分析了材料参数沿板厚方向为余弦函数分布时,不同梯度参数对平板响应的影响。结果表明Peano-Baker 级数解具有很好的收敛性。  相似文献   

8.
基于Timoshenko梁理论,研究各向异性功能梯度材料梁的自由振动。假设材料参数沿梁厚度方向按同一函数规律变化,建立了功能梯度材料梁的振动方程,求得简支条件下其自振频率表达式。通过算例,给出指数函数梯度变化Timoshenko梁的自振频率和模态图,结果表明不同梯度变化对材料结构动力响应有较大影响。该方法为发展功能梯度材料梁的设计与数值计算提供了理论依据。  相似文献   

9.
采用半逆解法,本系列工作中研究了功能材料悬臂梁力-电耦合问题的几个基本解,考虑了梯度效应对基本解的影响。本文是该系列工作的第一部分,研究了悬臂梁梁端受力偶作用的情况。   相似文献   

10.
邓先琪  苏成  马海涛 《工程力学》2020,37(9):248-256
功能梯度梁静动态响应的数值分析方法一般局限于有限元法,存在有限元法的固有缺点,有必要发展新的数值求解方法。将功能梯度梁静力分析的控制微分方程转化为与匀质材料梁静力分析控制微分方程相一致的形式,并利用匀质材料梁静力问题的格林函数,开展功能梯度梁的静力分析。在此基础上,进一步推导获得功能梯度梁的柔度矩阵,据此建立功能梯度梁的运动方程,开展功能梯度梁的动力特性分析和动力响应分析。数值算例表明,采用格林函数法可以高效准确地分析功能梯度梁的静力响应与动力行为,验证了方法的计算精度与效率。  相似文献   

11.
Using the Airy stress function, an analytical solution is obtained for a bi-material beam with a graded intermediate layer, which is subjected to a uniform load on the upper surface and has different boundary conditions at the two ends. Young’s modulus of the graded intermediate layer is assumed to be an arbitrary function of the thickness coordinate and its Poisson’s ratio is kept a constant. The solution can easily degenerate into the ones of the tri-material beam, the bi-material beam, the homogeneous beam, and the graded beam, and some of them coincide with the available solutions. The analytical and numerical (finite-element-based) results are in agreement with each other for several examples. The influence on the stress distribution for the cantilever beam is discussed when Young’s modulus of the graded intermediate layer takes different functions.  相似文献   

12.
Small scale effects in the functionally graded beam are investigated by using various nonlocal higher-order shear deformation beam theories. The material properties of a beam are supposed to vary according to power law distribution of the volume fraction of the constituents. The nonlocal equilibrium equations are obtained and an exact solution is presented for vibration analysis of functionally graded (FG) nanobeams. The accuracy of the present model is discussed by comparing the results with previous studies and a parametric investigation is presented to study the effects of power law index, small-scale parameter, and aspect ratio on the vibrational behavior of FG nanostructures.  相似文献   

13.
This article proposes a higher-order shear deformation beam theory for free vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in a thermal environment. The temperature-dependent material properties of functionally graded carbon nanotube-reinforced composite beams are supposed to vary continuously in the thickness direction and are estimated through the rule of mixture. The governing equations and boundary conditions are derived by using Hamilton's principle, and the Navier solution procedure is used to achieve the natural frequencies of the sandwich beam in a thermal environment. A parametric study is led to carry out the effects of carbon nanotube volume fractions, slenderness ratio, and core-to-face sheet thickness ratio on free vibration behavior of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets. Numerical results are also presented in order to compare the behavior of sandwich beams including uniformly distributed carbon nanotube-reinforced composite face sheets to those including functionally graded carbon nanotube-reinforced composite face sheets.  相似文献   

14.
吴晓  罗佑新 《振动与冲击》2011,30(10):245-248
采用Timoshenko梁修正理论研究了功能梯度材料梁的动力响应问题,利用静力方程确定了功能梯度材料梁的中性轴位置,在此基础上应用Timoshenko梁修正理论建立了功能梯度材料梁的振动方程,求得其自振频率表达式及其在简谐荷载作用下强迫振动的解析解。讨论分析了中性面位置、梯度指数等因素对功能梯度材料梁的动力响应的影响,并用有限元法验证了Timoshenko梁修正理论。通过实例计算,得到了中性轴位置对功能梯度材料梁动力响应有较大影响的结论。  相似文献   

15.
压电梯度薄壳的高阶理论解   总被引:2,自引:2,他引:0       下载免费PDF全文
压电功能梯度执行器能产生较大的位移、降低应力峰值并避免了粘结层带来的问题,压电梯度超声换能器能拓展频带宽度。本文作者提出了一个简单而有效的求解压电梯度薄壳力、电行为特性的高阶理论。设定位移分量为壳厚的线性函数,而电势沿厚度方向为二次分布。考虑了压电作动元的驱动信号不同时所具有的不同形式的电荷平衡方程。应用Fourier级数法得到压电系数沿厚度坐标变化的梯度壳的力电耦合的解析解。所得结果可退化至梁、板等多种特殊情况。利用所得方程分析了一非均匀简支压电层合板,并与三维精确结果作了对比,两者吻合得很好,表明该理论的正确性。最后具体求解了压电梯度圆柱壳的力、电特性,给出了位移、应力、电势沿厚度方向的变化规律。  相似文献   

16.
In the present work, mechanical behavior of a functionally graded cantilever micro-beam subjected to a nonlinear electrostatic pressure and temperature changes has been studied. It has been assumed that the top surface is made of pure metal and the bottom surface from a metal–ceramic mixture. The ceramic constituent percent of the bottom surface varies from 0% to 100%. In addition to the Volume Fractional Rule of material, exponential function has been used for representation of continuous gradation of the material properties through micro-beam thickness. Attention being paid to the ceramic constituent percent of the bottom surface, five different types of FGM micro-beams have been investigated. Nonlinear integro-differential thermo-electro mechanical equation based on Euler–Bernoulli beam theory has been derived and solved using Step-by-Step Linearization Method and Finite Difference Method. The effects of temperature changes and the electrostatic pressure on the deflection and stability of FGM micro-beams having various amounts of the ceramic constituent have been studied and normal stress distributions in the cross section along the beam thickness have been given and compared with a classic metal beam.  相似文献   

17.
In this paper, we study the free vibration of axially functionally graded (AFG) Timoshenko beams, with uniform cross-section and having fixed–fixed boundary condition. For certain polynomial variations of the material mass density, elastic modulus and shear modulus, along the length of the beam, there exists a fundamental closed form solution to the coupled second order governing differential equations with variable coefficients. It is found that there are an infinite number of non-homogeneous Timoshenko beams, with various material mass density, elastic modulus and shear modulus distributions having simple polynomial variations, which share the same fundamental frequency. The derived results can be used as benchmark solutions for testing approximate or numerical methods used for the vibration analysis of non-homogeneous Timoshenko beams. They can also be useful for designing fixed–fixed non-homogeneous Timoshenko beams which may be required to vibrate with a particular frequency.  相似文献   

18.
Buckling of beams made of functionally graded material under various types of thermal loading is considered. The derivation of equations is based on the Euler–Bernoulli beam theory. It is assumed that the mechanical and thermal nonhomogeneous properties of beam vary smoothly by distribution of power law across the thickness of beam. Using the nonlinear strain–displacement relations, equilibrium equations and stability equations of beam are derived. The beam is assumed under three types of thermal loading, namely; uniform temperature rise, nonlinear, and linear temperature distribution through the thickness. Various types of boundary conditions are assumed for the beam with combination of roller, clamped and simply-supported edges. In each case of boundary conditions and loading, a closed form solution for the critical buckling temperature for the beam is presented. The formulations are compared using reduction of results for the functionally graded beams to those of isotropic homogeneous beams given in the literature.  相似文献   

19.
In this study, we analytically solved the problem of a functionally graded beam with different moduli in tension and compression under the action of uniformly distributed loads. By determining the location of the unknown neutral layer of the beam, we first established a simplified mechanical model based on complete partition of tension and compression. Using boundary conditions and continuity conditions of the neutral layer, we obtained an elasticity solution of the problem, in which grade functions of tensile and compressive moduli of elasticity are assumed to be two different exponential expressions while Poisson's ratio is unchanged. The numerical results and comparison also verified the validity of the analytical solution. By changing the grade parameters of the material, the stress and displacement of the beam in three cases, i.e., the tensile modulus is greater than, equal to, or less than the compressive modulus, are discussed, respectively. The result shows that due to the introduction of bimodular effect and functional grade of materials, the maximum tensile and compressive bending stresses may not take place at the bottom and top of the beam, which should be given more attention in the analysis and design of structures made of functionally graded materials with bimodular effect.  相似文献   

20.
程国华  曹志远 《功能材料》2006,37(8):1348-1351
推导出适应功能梯度材料构件分析的半解析方法基本算式,并针对功能梯度构件的材料参数随空间坐标变化的特点,将材料参数纳入到力学方程中进行整体积分计算,从而编制统一程序计算不同边界条件下的板件问题.该法适应性强而又简洁高效,且不同于一般的半解析法,可采用一维离散,给出三维分析结果,是一种解决功能梯度构件力学性能分析的有效数值方法.文中用半解析法分析几种具有不同复杂边界条件的功能梯度板,给出了板件的力学量三维分布形态.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号