首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In both pressurized and oxygen-enriched fluidized bed combustion the partial pressure of CO2 in the reactor becomes high, which affects SO2 capture by limestone. Both of these technologies are also applicable to decreasing greenhouse gas emissions; the first one by increasing the efficiency of electric energy production and the latter by enabling capture of carbon dioxide for storage.Attrition increases the reaction rate by removing the sulphated layer on the particle, thus reducing the diffusion resistance. In the well-known solution for the shrinking core model the reaction time can be presented as the sum of the contributions of the kinetics and diffusion. It is shown that the effect of attrition can be expressed as an auxiliary term in this expression. A method to extract the diffusivity of the product layer from the SO2 response in a bench-scale fluidized bed test using a limestone sample with a wide particle size distribution is presented. Based on a population balance model, a method to estimate the particle-size-dependent attrition rate from measured particle size distributions of the feed and bed material is illustrated for a 71-MWe pressurized power plant. In addition attrition and its effect on the optimization of the limestone particle size for sulphur capture in oxygen-enriched combustion are discussed.  相似文献   

2.
Single particle devolatilization followed by combustion of the residual coal char particle has been analyzed in a batch-fluidized bed. The kinetic scheme with distributed activation energy is used for coal devolatilization while multiple chemical reactions with volume reaction mechanism are considered for residual char combustion. Both the models couple kinetics with heat transfer. Finite Volume Method (FVM) is employed to solve fully transient partial differential equations coupled with reaction kinetics. The devolatilization model is used to predict the devolatilization time along with residual mass and particle temperature, while the combined devolatilization and char combustion model is used to predict the overall mass loss and temperature profile of coal. The computed results are compared with the experimental results of the present authors for combustion of Indian sub-bituminous coal (15% ash) in a fluidized bed combustor as well as with published experimental results for coal with low ash high volatile matter. The effects of various operating parameters like bed temperature, oxygen mole fraction in bulk phase on devolatilization time and burn-out time of coal particle in bubbling fluidized bed have been examined through simulation.  相似文献   

3.
John M. Vleeskens  Gerrit Hamburg 《Fuel》1991,70(12):1377-1381
In coal combustion processes the rate controlling mechanism varies from external diffusion and pore diffusion to chemical kinetics. The particle zone where combustion takes place therefore changes from the outer layer, for large particles at high temperatures, to the total internal pore volume, for small particles at low temperatures. Partial penetration of oxygen occurs in intermediate cases. Recent publications report on fluidized bed experiments where, according to the model used, combustion takes place at or near the outer surface of the particle (‘shrinking particle model’) in a narrow boundary layer. Knowledge of the depth of this layer could contribute to combustion modelling. This paper shows that during fluidized bed combustion at 900 °C oxygen penetrates into the char to a depth of 50–100 μm. This is concluded from the width of the zone where pyrite particles in the char are oxidized. The presence of open pores may increase the depth of the internal combustion layer up to several hundreds of micrometres.  相似文献   

4.
海藻生物质颗粒流化床燃烧试验研究   总被引:3,自引:1,他引:3       下载免费PDF全文
王爽  姜秀民  王谦  吉恒松 《化工学报》2013,(5):1592-1600
在小型流化床试验台上研究了海藻颗粒(条浒苔与马尾藻)的流化床燃烧。海藻在流化床内的挥发分析出燃烧时间都在1 min左右。条浒苔颗粒在流化床中燃烧先进行脱水和挥发分的燃烧,接着发生焦炭燃烧,其燃烧过程符合缩核模型,炭核由外向内逐层燃烧,而灰层半径几乎不变。但马尾藻颗粒由于挥发分的大量快速释放而迅速膨胀破碎成屑。另外通过对条浒苔颗粒及不同燃烧时间后收集的焦炭颗粒剖面的SEM扫描电镜观察,发现随着燃烧的进行,颗粒内孔隙增大,微孔表面粗糙。进一步详细研究了两种海藻颗粒(条浒苔与马尾藻)在流化床内单次投料下的燃烧。随着床温的升高,条浒苔释放NOx相对浓度增加,CO相对浓度减少。而马尾藻释放气体中SO2与NOx含量相对条浒苔有所增加;随着床温的升高,CO相对浓度减少。床温的升高使得床内传热速率加快,两种海藻挥发分的析出提前,燃尽时间缩短。风速、床高的升高使得两种海藻燃烧容易,燃尽时间缩短。  相似文献   

5.
A mathematical model of SO2 capture by uncalcined limestone particles with solid attrition under pressurized fluidized bed combustion conditions was developed based on the shrinking unreacted-core model. Since the thickness of the product layer is sufficiently much smaller than the particle size, a flat surface model was employed. The difference in SO2 capture behavior between continuous solid attrition and intermittent attrition was investigated. The reaction rate for intermittent solid attrition was found to be lower than that for continuous attrition mode under low SO2 concentration conditions. A simple mathematical expression to calculate reaction rate of SO2 capture per unit external surface area of limestone is proposed.The present simplified mathematical model of SO2 capture by single limestone particle under periodical attrition conditions was applied to the analysis of a large-scale pressurized fluidized bed combustor. By giving the period of attrition as a parameter, the experimental results agreed well with the model results. From the vertical concentration profile of SO2 concentration, the emission of SO2 was found to be governed by the balance between SO2 formation rate from char and SO2 capture by limestone at the upper surface of the dense bed. A simplified expression to estimate SO2 emission from pressurized fluidized bed combustors was proposed.  相似文献   

6.
This study investigated the effects of high temperature and combustion conditions on the attrition of fluidized material in a fluidized bed. Silica sand was fluidized in air at an atmospheric pressure between 873 K and 1,073 K. The operating parameters evaluated in investigating the attrition rate of fluidized material included particle size, temperature and both combustion and non-combustion conditions. Experimental results indicated that the total weight of attrition increased with increasing temperature and decreased with increasing particle size. The attrition was higher during the initial fluidization period than the later period, due to the loss of sharp corners and edges of the attrition particles. The initial and final attrition rates during combustion were higher than those in the non-combustion condition, because the heat and thermal shock were produced to increase attrition rate during incineration. Comparing the experimental data with previous correlations, that reveals a significant level of error in the prediction results from existing correlations. This error may occur because the experimental equations neglected the operating temperature and particle size.  相似文献   

7.
Mathematical models of SO2 capture by uncalcined limestone (CaCO3) particles with solid attrition were compared under pressurized fluidized bed combustion conditions. For reaction, we used: (1) a shrinking core model with a distinct border between the product (CaSO4) layer with a conversion of unity and unreacted core with a conversion of zero, and (2) a distributed reaction model with smooth transition from the unreacted part to the product part with conversion between zero and unity. Continuous attrition and intermittent attrition were compared for attrition. Apparent conversion of the solid was overestimated regardless of the reaction model for continuous attrition. Attrition model plays an important role in determining limestone utilization efficiency, whereas the reaction model played only a minor role.  相似文献   

8.
In a fluidized bed, attrition both increases the number of particles and reduces particle size, which may affect reactor performance, fluidizing properties, operating stability and operating costs. Most fluidized applications are conducted at high temperature, but in the past most attrition correlations were performed at room temperature, so the attrition rate at high temperature could not be predicted. In contrast, this study investigates the attrition rate of fluidized materials at high temperature. Silica sand was used as the bed material; the operating parameters included temperature, particle size, static bed height and gas velocity to assess the attrition rate. Then an appropriate correlation was developed by regression analysis to predict attrition rate at high temperature. Experimental results indicated that the attrition rate increases with increasing temperature. In addition, the particle attrition increased as average particle size decreased because the probability of collision increases with surface area. The attrition rate increased with increasing gas velocity because of increased kinetic stress of particle movement. The actual density and viscosity of air at specific fluidization temperature were modified and an Ar number was introduced to fit our experimental data. The experimental correction agrees with the experimental results, which can predict particle attrition rate at high temperatures.  相似文献   

9.
煤中矿物组分在流化床燃烧过程中的转化   总被引:3,自引:2,他引:1  
循环流化床锅炉炉内的燃烧及传热与炉内床料的状态密切相关,而炉内床料主要是由燃煤含有的矿物组分经过燃烧、爆裂和磨耗过程形成的.分析和总结了在循环流化床锅炉中温燃烧条件下,煤中矿物组分化学反应的一般情况,总结了循环流化床锅炉灰渣的化学组分与组分的存在形态有利于煤粉锅炉灰渣的特点.  相似文献   

10.
《Chemical engineering science》1985,40(10):1905-1916
A model is proposed which takes into account the interaction between combustion in the pores, weakening of the mechanical structure of the particle and attrition during the fluidized combustion of a char. A constitutive relationship between the degree of enfeeblement of the outer region of particles and the rate of regression of the surface is introduced to characterize the behaviour of the char in respect to combustion assisted attrition. An orthogonal collocation technique is used to solve model equations.Results obtained in the batch fluidized bed combustion of the char of a bituminous coal, by means of a 40 mm ID laboratory unit especially equipped for time resolved collection of attrited carbon, are used to test the model. Attrited carbon rates and carbon combustion efficiencies measured in experiments carried out with oxygen concentration in fluidizing gas changing from 21 to 0.75% show a fair agreement with values given by model calculations.  相似文献   

11.
The combustion of single bituminous char particles (4-12 mm diameter) was studied in a turbulent fluidized bed operated at 1098 K using air as the fluidising medium. Results indicated that particles burn with constant density following a shrinking sphere model. Burning rates are much higher than those observed in a bubbling fluidized bed. The rate of transfer of oxygen to the particle surface is also higher than that observed in bubbling beds. A model is proposed to calculate the Sherwood numbers of the burning carbon particles. Experimental values of the Sherwood numbers agree well with those predicted from the model.  相似文献   

12.
Combustion of a single-particle high ash coal char at elevated pressure has been analyzed. A fully transient shrinking reactive core model incorporating a simple mechanistic kinetic scheme is used to study the combustion characteristics of high ash coal char. The model includes heat and mass transfer phenomena, reaction kinetics and intra-particle details. Finite volume method (FVM) has been used to solve partial differential equations representing fully transient conservation equations. The char combustion model predicts the mass-loss profile and burnout time of the char particle at different temperature and oxygen concentration. The computed results are found to agree well with the published experimental findings of pressurized combustion of high ash coal char. The effects of bulk temperature, total pressure and initial particle size on combustion characteristic and burnout time have been examined through model simulation.  相似文献   

13.
This paper proposes a transient three-phase numerical model for the simulation of multiphase flow, heat and mass transfer and combustion in a bubbling fluidized bed of inert sand. The gas phase is treated as a continuum and solved using the computational fluid dynamics (CFD) approach; the solid particles are treated as two discrete phases with different reactivity characteristics and solved on the individual particle scale using an extended discrete element model (DEM). A new char combustion submodel considering sand inhibitory effects is also developed to describe char particle combustion behavior in the fluidized bed. Two conditions, i.e. a single larger graphite particle and a batch of smaller graphite particles, are used to test the prediction capability of the model. The model is validated by comparing the predicted results with the previous measured results and conclusions in the literature in terms of bed hydrodynamics, individual particle temperature, char residence time and concentrations of the products. The effects of bed temperature, oxygen concentration and superficial velocity on char combustion behavior are also examined through model simulation. The results indicate that the proposed model provides a proximal approach to elucidate multiphase flow and combustion mechanisms in fluidized bed combustors.  相似文献   

14.
陶中东  顾正东  吴东方 《化工进展》2014,33(10):2535-2539,2564
介绍了近年来流化磨损测试设备、流化磨损机理以及流化磨损动力学模型等3个方面的研究进展;通过比较单颗粒测试体系和多颗粒测试体系,阐明了多颗粒测试体系更接近工业流化磨损过程,并且介绍了实验室流化床测试设备的发展;概括了颗粒流化磨损的两种典型机理:表面磨损和体相断裂。综述了现有的流化磨损动力学模型,指出了流化磨损时变规律是研究颗粒流化磨损的基础,目前的时变规律模型是分段函数的形式,未能把流化磨损的起始阶段和平衡阶段统一起来;其他磨损模型致力于描述流化气速和流化床结构与磨损速率的关系。指出今后需在时变规律、颗粒性质和鼓泡特征等方面加强对流化磨损的研究,以满足完善流化磨损机理和开发高耐磨损性颗粒材料的需要。  相似文献   

15.
Flue gas desulfurization by means of limestone injection under simulated fluidized bed oxyfiring conditions was investigated, with a particular focus on particle attrition and fragmentation phenomena. An experimental protocol was applied, based on the use of complementary techniques that had been previously developed for the characterization of attrition of sorbents in air-blown atmospheric fluidized bed combustors. The extent and pattern of limestone attrition by surface wear in the dense phase of a fluidized bed were assessed in bench scale fluidized bed experiments under simulated oxyfiring conditions. Sorbent samples generated during the oxyfiring tests were further characterized from the standpoint of fragmentation upon high velocity impact by means of a particle impactor. The experimental results were compared with those previously obtained with the same limestone under air-blown atmospheric fluidized bed combustion conditions. The profound differences in the attrition and fragmentation extents and patterns associated with oxyfiring as compared to air-blown atmospheric combustion and the role played by the different attrition/fragmentation paths were highlighted. In particular, it was noted that attrition could effectively enhance particle sulfation under oxyfiring conditions by continuously disclosing unconverted calcium to the sulfur-bearing atmosphere.  相似文献   

16.
Fluidized bed combustion of high ash anthracite (HAA) was experimentally studied. The combustor consists of 0.25 m ID bed, and auxiliary equipments for coal feeding, ash removal, lemperature control, etc. Experimental results elucidate main cause of fuel loss to be elutriation of fines (i.e., flyash) containing unburned carbon. However, detailed balances of particle size distribution show majority of carbon in flyash comes from fines contained in the feed instead of attrition of coarse particles. The latter is the main source of flyash for conventional coal. The difference is due to much smaller attrition rate of HAA; feed HAA particles do not shrink much in size by combustion and attrition.  相似文献   

17.
Slagging entrained‐flow gasifiers operate above the melting temperature of the ash. As slag is highly nonwetting on the surface of char (carbon) particles, it is likely that it will agglomerate into one or several slag droplets and some of these droplets can detach from the char particles. If the slag exists in the form of droplets on the char surface rather than as a solid shell around the unreacted char particle, a shrinking particle model would be more physically realistic representation in comparison to the widely used shrinking core model (SCM). In the early section of the gasifier, the temperature remains below the ash melting temperature and, therefore, the SCM is more appropriate in this region. With this motivation, a novel hybrid shrinking‐core shrinking‐particle model has been developed. The model provides spatial profile of a number of important variables that are not available from the traditional SCM. © 2015 American Institute of Chemical Engineers AIChE J, 62: 659–669, 2016  相似文献   

18.
The performance of synthetic ettringite as a sorbent in fluidized bed desulphurization has been assessed and compared with that of a commercial limestone. Experiments have been carried out in a bench scale fluidized bed reactor under simulated desulphurizing (steadily oxidizing) combustion conditions. Sorbent performance has been characterized in terms of desulphurization rate, maximum sulphur uptake and attrition propensity. Fluidized bed sulphation experiments have been complemented by microstructural characterization of solid samples, accomplished via X-ray diffraction analysis, scanning electron microscopy and sulphur mapping of cross-sections of particles embedded in epoxy resin.

Experimental results show that both the rate and the maximum extent of sulphur uptake by ettringite significantly exceed those of the limestone. Maximum degree of free calcium utilization is 0.58 for ettringite compared with 0.27 for the limestone. Sulphation tests also indicate that attrition propensity of ettringite is larger than that correspondingly observed for the limestone. Microstructural characterization indicates that sulphation of ettringite takes place evenly throughout the particle cross-section, whereas sulphation of limestone mostly conforms to a core-shell pattern.

Along a parallel pathway, the rate and yield of ettringite formation by hydration of fly ash from a utility fluidized bed boiler have been assessed. Formation of ettringite in these experiments appears to be quantitative upon curing of ash at 70 °C for times up to 4 days.  相似文献   


19.
The combustion characteristics of coal char are highly dependent on initial pore structure of devolatilized char as well as on the structural evolution during the combustion of char. The development of pore structure also throws light on the mechanism of the combustion process. In the present work evolution of pore structure of partially burnt coal char of Indian origin has been investigated experimentally in a batch-fluidized bed and analyzed. The BET surface area, micropore surface area and porosity of char at various levels of carbon burn-off have been determined. Experimental specific surface area has been found to agree well with theoretical prediction using random pore model. Modified random pore model is used to determine the active surface area. Char combustion mechanism based on shrinking unreacted core and shrinking reacted core models are delineated during the course of reaction at various bed temperatures. This is substantiated with the proportional representation of ash and carbon matrix in scanning electron microscope images. It is also concluded that in the present investigation the mean pore size is much smaller and hence the Knudsen diffusion predominates. Analysis based on similar experimental observations and models for pore structure evolution to investigate char combustion reaction regime has not been reported in literature.  相似文献   

20.
The effects of ash content, ash layer heat and mass transfer on a single granulated char particle (10–18 mm in diameter) combustion in an air stream (12 cm s−1 in cold base) are studied. The transient temperature of various ash content char particle burning in the surrounding gas temperatures of 900 to 1200 K is simulated. Agreement between simulated and experiment results is obtained by adjusting the ash layer diffusion coefficient and heat conductivity, surface emissivity and the reaction rate constant. The reaction rate constant plays an important role in modeling the initial stage of char particle combustion even when the overall rate is ash layer diffusion controlled. It determines the particle heating rate in the initial stage of combustion, and then indirectly influences the peak temperature. The ash layer diffusion resistance affects the rate controlling processes and the pattern of the time-temperature profile. The higher ash content char particle burns with a lower peak temperature and earlier temperature decrease due to the lower ash layer porosity and lower ash layer diffusion coefficient. It is concluded that the high ash particle combustion is controlled by ash layer diffusion except in the initial stage of combustion. As for the lower ash content char particle, it is controlled mainly by reaction at lower ambient temperature and by film diffusion at a higher temperature in the earlier stage. However, in the last stage, it is controlled by ash layer diffusion. The transition occurs when the ash layer is formed and the diffusion resistance is significant, and it is at that time that the particle reaches its peak temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号