首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
关于土工合成材料加筋设计的若干问题   总被引:2,自引:0,他引:2  
目前土工合成材料加筋技术被广泛应用,但人们对于加筋土中筋材与土间的相互作用的机理的认识还不够深入,因而在设计中总体上趋于保守。结合岩土工程的设计理论,指出土工合成材料在设计方法方面的不合理性;对于加筋挡土墙、加筋土坡、加筋软土地基上的土堤和桩网结构的设计分别进行了讨论;结合一些案例中的实测和预计的筋材应变和应力,进一步指出目前设计的保守性。最后指出,目前基于极限平衡法的设计不尽合理,而通过变形协调的筋土共同作用的研究,采用更能反映其相互作用机理的设计方法是非常必要的。  相似文献   

2.
The assessment of the internal stability of geosynthetic-reinforced earth retaining walls has historically been investigated in previous studies assuming dry backfills. However, the majority of the failures of these structures are caused by the water presence. The studies including the water presence in the backfill are scarce and often consider saturated backfills. In reality, most soils are unsaturated in nature and the matric suction plays an important role in the wall's stability. This paper investigates the internal seismic stability of geosynthetic-reinforced unsaturated earth retaining walls. The groundwater level can be located at any reinforced backfill depth. Several nonlinear equations relating the unsaturated soil shear strength to the matric suction and different backfill type of soils are considered in this study. The log-spiral failure mechanism generated by the point-to-point method is considered. The upper-bound theorem of the limit analysis is used to evaluate the strength required to maintain the reinforced soil walls stability and the seismic loading are represented by the pseudo-dynamic approach. A parametric study showed that the required reinforcement strength is influenced by several parameters such as the soil friction angle, the horizontal seismic coefficient, the water table level, the matric suction distribution as well as the soil types and the unsaturated soils shear strength.  相似文献   

3.
A Finite Element procedure was used to investigate the reinforcement load and the deformation mode for geosynthetic-reinforced soil (GRS) walls subject to seismic loading during their service life, focusing on those with marginal backfill soils. Marginal backfill soils are hereby defined as filled materials containing cohesive fines with plasticity index (PI) >6, which may exhibit substantial creep under constant static loading before subjected to earthquake. It was found that under strong seismic loading reinforced soil walls with marginal backfills exhibited a distinctive “two-wedge” deformation mode. The surface of maximum reinforcement load was the combined effect of the internal potential failure surface and the outer surface that extended into the retained earth. In the range investigated, which is believed to cover general backfill soils and geosynthetic reinforcements, the creep rates of soils and reinforcements had small influence on the reinforcement load and the “two-wedge” deformation mode, but reinforcement stiffness played a critical role on these two responses of GRS walls. It was also found that the “two-wedge” deformation mode could be restricted if sufficiently long reinforcement was used. The study shows that it is rational to investigate the reinforcement load of reinforced soil walls subject to seismic loading without considering the previous long-term creep.  相似文献   

4.
A series of plane strain compression (PSC) tests were performed on large sand specimens unreinforced or reinforced with prototype geosynthetic reinforcements, either of two geogrid types and one geocomposite type. Local tensile strains in the reinforcement were measured by using two types of strain gauges. Sustained loading (SL) under fixed boundary stress conditions and cyclic loading (CL) tests were performed during otherwise monotonic loading at a constant strain rate to evaluate the development of creep deformation by SL and residual deformation by CL of geosynthetic-reinforced sand and also residual strains in the reinforcement by these loading histories. It is shown that the creep deformation of geosynthetic-reinforced sand develops due to the viscous properties of both sand and geosynthetic reinforcement, while the residual deformation of geosynthetic-reinforced sand during CL (defined at the peak stress state during CL) consists of two components: i) the one by the viscous properties of sand and reinforcement; and ii) the other by rate-independent cyclic loading effects with sand. The development of residual deformation of geosynthetic-reinforced sand by SL and CL histories had no negative effects on the subsequent stress-strain behaviour and the compressive strength was maintained as the original value or even became larger by such SL and CL histories. The local tensile strains in the geosynthetic reinforcement arranged in the sand specimen subjected to SL decreased noticeably with time, due mainly to lateral compressive creep strains in sand during SL of geosynthetic-reinforced sand. This result indicates that, with geosynthetic-reinforced soil structures designed to have a sufficiently high safety factor under static loading conditions because of seismic design, it is overly conservative to assume that the tensile load in the geosynthetic reinforcement is maintained constant for long life time. Moreover, during CL of geosynthetic-reinforced sand, the residual tensile strains in the geosynthetic reinforcement did not increase like global strains in the geosynthetic-reinforced sand that increased significantly during CL. These different trends of behaviour were also due to the creep compressive strains in the lateral direction of sand that developed during CL of geosynthetic-reinforced sand.  相似文献   

5.
The mechanical properties of geosynthetic reinforcements are known to be time-, environment- and stress-dependent. Characterization of these reinforcement properties is often assessed under controlled laboratory settings and extrapolated to the design life of geosynthetic-reinforced soil structures. However, despite the wide application of geosynthetic reinforcement in earth retaining structures, there is limited evaluation of how mechanical properties of geosynthetic materials change in situ on constructed works; and primarily limited to case studies within the first decade following construction. This study describes the change in mechanical properties of geogrids retrieved from the facing of the wrapped-face of one of the oldest geosynthetic-reinforced mechanically-stabilized earth (MSE) walls in the United States, constructed in 1983 in a relatively harsh, coastal environment. Laboratory characterization of mechanical and chemical properties of the geogrid are presented, and compared to properties of archived samples, as well as samples from another structure exhumed 8 and 11 years after its respective construction. The laboratory test results demonstrate that the geogrid mechanical and chemical properties have not significantly changed in the 35+ years of service. While the data from this study represents a limited set of conditions, these results demonstrate that geogrids may perform well long after construction.  相似文献   

6.
Classical retaining structures and conventional reinforced soil designs are limiting points of a continuous spectrum of potential solutions. These limiting cases represent legitimate designs, but they are not necessarily optimal. The present work considers the issue of optimal design of reinforced soil retaining structures in this spectrum. For the particular example considered in the present study the cost of the optimal solution is 47% of the cost of classical cantilever wall without soil reinforcement and 65% of the cost of the conventional reinforced soil design which neglects the wall contribution during reinforcement design. These values depend, naturally, on the support problem under consideration, and component's unit prices, but they clearly illustrate the large potential benefit of the proposed design process.

Conventional design procedures do not have the tools needed in order to evaluate interaction between the wall and the supporting system. As a result, conventional design procedures are restricted to the two end points of the spectrum of potential designs, in which one or the other of the two main components of the support system (wall, or reinforced soil) is practically neglected. The design procedure presented by Baker and Klein (Geotext. Geomembranes 22 (3) (2003a) 119–150; Geotext. Geomembranes 22 (3) (2003b) 151–177) overcomes the limitation of the classical design approach by the introduction of participation factors which quantify the interaction between the wall and the reinforced soil. As a result, the proposed design procedure allows one to quantify the economic trade-off between different walls and supporting systems, making it possible to consider optimal design issues.  相似文献   


7.
土工合成材料加筋土挡墙具备优良的抗震性能,但是,国内外现行的加筋土挡墙筋材动拉力计算方法存在地震动参数选用不尽合理的问题,一方面可能带来结构安全隐患,另一方面也造成了工程界的疑虑.基于此,在前期工作的基础上应用非线性动力有限元法分析了高加筋土挡墙在不同地震激励作用下的地震响应,重点讨论了强震作用下筋材拉力的影响因素.分...  相似文献   

8.
首先,简述了加筋土挡墙比天然地基及普通挡土墙具有更好的抗震性能,对加筋土挡墙抗震性能的主要影响因素进行了综述,包括:筋材长度和筋材层间距、回填土性质、地震系数等。同时也指出,加筋土挡墙在地震烈度较大时也会发生破坏。最后,根据对加筋土挡墙抗震性能研究的结果指出,可以通过进一步的研究来定量评价加筋土挡墙的抗震能力,同时了解地震过程中的筋土耦合问题,综合考虑水平地震加速度(ah)和竖向地震加速度(av)对加筋土抗震性能的影响。  相似文献   

9.
This paper describes a pseudo-static approach developed for geosynthetic-reinforced earth (GRE) retaining walls, calibrated against given levels of wall performance defined by specified values of earthquake-induced displacements. The GRE walls generally show a good performance under severe seismic loading due to the capability of reinforcements to redistribute the deformations induced by the seismic actions within the reinforced zone. This can be achieved by promoting the activation of internal plastic mechanisms involving the reinforcements strength, providing that they are characterised by adequate extensional ductility. In the proposed procedure, the seismic coefficient k to be used in a pseudo-static calculation is assumed equal to the internal seismic resistance of the wall kcint, related, through the kinematic theorem of limit analysis, to the maximum strength demand of geosynthetic reinforcements. The seismic coefficient is then calibrated against given levels of seismic wall performance, defined by threshold values of earthquake-induced displacements that result by the temporary activation of plastic mechanisms during severe seismic loading. Permanent displacements induced by earthquake loadings are evaluated through empirical relationships based on a parametric integration of a large number of Italian seismic records and are expressed as a function of the critical and the maximum horizontal accelerations. A procedure is finally proposed to conceive a reinforced-earth retaining wall with an internal seismic resistance lower than the external one, so that a prescribed level of seismic performance and the activation of internal mechanisms are ensured during severe seismic shaking.  相似文献   

10.
Geosynthetics, factory-manufactured polymer materials, have been successfully used to solve many geotechnical problems in civil engineering. Two common applications are earth stabilization and erosion control. Geosynthetics used for earth stabilization include but are not limited to stabilized slopes, walls, embankments, and roads. Geosynthetics used for erosion control are mostly related to slopes, river channels and banks, and pond spillways. To enhance environmental sustainability, vegetation has been increasingly planted on the facing or surfaces of these earth structures. Under such a condition, geosynthetics mainly function as surficial soil stabilization while vegetation provides green appearance and erosion protection of earth surfaces. Recently, geosynthetic or geosynthetic-like material has been used to form green walls outside or inside buildings to enhance sustainability. Geosynthetics and vegetation are often integrated to provide combined benefits. The interaction between geosynthetics and vegetation is important for the sustainability of the earth and building wall surfaces. This paper provides a review of the current practice and research in the geosynthetic stabilization of vegetated earth and building surfaces for environmental sustainability in civil engineering with the emphases on geosynthetic used for erosion protection, geosynthetic-stabilized slopes, geosynthetic-stabilized unpaved shoulders and parking lots, and geosynthetic-stabilized vegetated building surfaces.  相似文献   

11.
A laboratory testing that simulates the mechanisms of a geosynthetic-reinforced layer was used to assess the impact of rainwater infiltration on reinforcement loads and strains in mechanically stabilized earth (MSE) walls. The testing device allows measuring loads transferred from a backfill soil subjected simultaneously to surcharge loading and controlled irrigation. Load-strain responses of geosynthetic-reinforced layers constructed with three different geosynthetics under a moderate rainfall are related to suction captured along the depth of reinforced layers. Results show infiltration leading to increases on strains and tensile loads mobilized by reinforcements. Rates of increases of both parameters were found to be dependent of global suction, geosynthetic stiffness and hydraulic properties. In addition, increases in water content at soil-geotextile interfaces due to capillary breaks also had a significant effect on mobilized loads. The loss of interaction due to the interface wetting was observed to affect the stress transference from soil to geosynthetic reinforcement. An approach suggested for calculation of lateral earth pressures in unsaturated GMSE walls under working stress conditions and subjected to rainfall infiltration demonstrated a reasonable agreement with experimental data.  相似文献   

12.
双面加筋路堤作为加筋土挡土墙的一种衍生结构,沿袭了加筋土挡土墙优良的抗震性能,被广泛应用于道路建设工程,然而国内外关于双面加筋路堤的抗震设计还不够完善,采用的基于极限平衡法的抗震设计仍存在诸多问题。采用基于PLAXIS软件的有限元分析方法,对双面加筋路堤进行了较为全面的动力特性分析,结果表明,地震作用下双面加筋路堤的各层筋材最大内力分布、单侧面板侧移形式及路面沉降形式同单一的加筋土挡土墙表现形式相似;通过对不同宽高比结构筋材内力的分析得出,在地震作用下,加筋区及非加筋区之间存在第二潜在破裂面发育的可能。基于单自由度强迫振动理论及数值分析结果,建立了整体最大筋材内力与地震动及结构参数的关系。  相似文献   

13.
The selection of geosynthetic reinforcements in the design of geosynthetic-reinforced soil (GRS) retaining walls has been based on the requirement on the long-term strength. However, the mobilized loads in the reinforcements are related to both the reinforcement stiffness and soil deformation, and the desired factor of safety may not exist in the earth structure if they are not properly considered. Therefore, it is also important to take into account the long-term reinforcement stiffness when designing GRS retaining walls. In this study, a simplistic analytical method is proposed to determine the required reinforcement stiffness with given factor of safety on the backfill soil. The method takes into account soil-reinforcement interaction, nonlinear stress-strain behavior of soil, and soil dilatancy. The reinforcement strains predicted by the proposed method were compared to those analyzed by validated nonlinear Finite Element analyses, and close agreement was obtained.  相似文献   

14.
There are several methods proposed in the last two decades that can be used to design geosynthetic reinforced soil retaining walls and slopes. The majority of them are based on limit equilibrium considerations, assuming bi-linear or logarithmic spiral failure surfaces. Based on these failure mechanisms, design charts have been presented by several authors. However, the use of design charts is less and less frequent. The paper presents results from a computer program, based on limit equilibrium analyses, able to quantify earth pressure coefficients for the internal design of geosynthetic reinforced soil structures under static and seismic loading conditions. Failure mechanisms are briefly presented. Earth pressure coefficients calculated by the developed program are compared with values published in the bibliography. The effect of seismic loading on the reinforcement required force is also presented. To avoid the use of design charts and based on the obtained results, approximate equations for earth pressure coefficients estimation are proposed. The performed analyses show that the failure mechanism and the assumptions made have influence on the reinforcement required strength. The increase of reinforcement required strength induced by the seismic loading, when compared to the required strength in static conditions, grows with the backfill internal friction angle. The effects of the vertical component of seismic loading are not very significant.  相似文献   

15.
In this paper, shaking table tests were carried out on both a small-scale and a full-scale earth-fill dams with geosynthetic clay liners to examine their seismic performance. The behavior of these fully instrumented earth-fill dams when subjected to seismic loading was also simulated by numerical analysis. Firstly, in the small-scale shaking table test, no failure was observed along the geosynthetic clay liner when the earth-fill dam was subjected to seismic motion. Numerical analysis confirmed that the behavior of the model earth-fill dam was unaffected by the geosynthetic clay liner. Secondly, a comparative shaking table test was carried out on full-scale earth-fill dams, one with a sloping core zone and another with a geosynthetic clay liner. Both model dams showed similar acceleration response and deformation behavior. It should be mentioned that the acceleration response increased gradually toward the top of the dam, and the deformation, after shaking, was relatively large near the foot of the slope. These observations were successfully simulated by the numerical analysis.  相似文献   

16.
The objective of this paper is to examine the permeability characteristics of geosynthetic layers under confinement with soils having relatively low permeability. For this purpose, a large permeameter was custom designed and a series of permeability tests were carried-out by varying soil type and number of geosynthetic layers. Further, effect of provision of sand cushion and the thickness of sand cushion on permeability characteristics was also examined. Normal stress was increased in intervals of 50 kPa up to 200 kPa. With an increase in normal stress, a decrease in the permeability characteristics of a geosynthetic-reinforced soil was observed. The permeability characteristics were found to improve significantly with the provision of sand cushion and an increase in its thickness. Based on the definition of equivalent coefficient of permeability of stratified soils for parallel flow, an equation for estimating coefficient of permeability of soil–geosynthetic system with and without sand cushion is proposed. Considering the application of geosynthetics in reinforced slopes and walls with low-permeable backfill soils, a suitable geosynthetic with a thin layer of sand cushion is recommended. This in turn can also help in enhancing the pore-water pressure dissipation.  相似文献   

17.
The knowledge of soil-geosynthetic interface behaviour is a key point in the design of geosynthetic-reinforced soil structures. The pullout ultimate limit state can be reproduced conveniently by means of pullout tests performed with large-size laboratory apparatuses, which allow studying the interaction mechanisms that develop in the anchorage zone. During the service life of geosynthetic-reinforced soil structures, reinforcements may be subjected to long-term cyclic vehicular loads or short-term seismic loads in addition to dead loadings, such as the structure's self-weight and other sustained loads. In order to study the influence of a cyclic loading history (a sinusoidal function with fixed amplitude A, number of cycles N and frequency f) on the post-cyclic peak pullout resistance, the writers carried out a series of multi-stage pullout tests on a high density polyethylene extruded uniaxial geogrid embedded in a compacted granular soil for different vertical effective stress σv values. Moreover, the stability of the soil-geosynthetic interface from a point of view linked to the cyclic loading application has also been investigated. Test results showed that the design pullout resistance parameters are affected by the applied cyclic loading history for specific combined conditions (A, N and σv) and it should be taken into account for designing geosynthetic reinforced soil structures.  相似文献   

18.
Although a cohesionless backfill is recommended for geosynthetic reinforced earth retaining walls, cohesive soil have been widely used in many regions across the globe for economic reasons. This type of backfill exposes the soil to the crack formation that leads to reduce the stability of the system. In this paper, to investigate the internal seismic stability of reinforced earth retaining walls with cracks, the discretization method combined with the upper bound theorem of limit analysis are used. The potential failure mechanism is generated using the point-to-point method. Two types of cracks are considered, a pre-existing crack and a crack formation as a part of the failure mechanism. The use of the discretization method allows the consideration of the vertical spatial variability of the soil properties. A pseudo-dynamic approach is implemented which allows the account of the dynamic characteristics of the ground shaking. The presented method is validated using the conventional limit analysis results of an existing study conducted under static conditions. Once the proposed technique to consider the cracks is validated, a parametric study is conducted to highlight the key parameters effects on the lower bound of the required reinforcement strength.  相似文献   

19.
Shear strength characteristics of the geosynthetic-reinforced rubber-sand mixture (RSM) has been investigated by conducting Unconsolidated Undrained (UU) triaxial test. In the first part, a series of UU triaxial tests have been carried out to know the size effect of granulated rubber/tyre chips from seven different rubber sizes. RSM sample that provides higher strength, energy absorption capacity and stiffness is considered as the optimal size and has been used in the investigation on geosynthetic-reinforced RSM. In the second part, shear strength characteristics of geosynthetic-reinforced RSM has been investigated by varying proportions of rubber content (50% and 75% rubber by volume), type of geosynthetic (geotextile, geogrid and geonets), number of geosynthetics (1–4) layers, geosynthetic arrangement and confining pressure. The results demonstrate that RSM reinforced with geosynthetic has enhanced peak strength, failure strength and corresponding axial strain at failure. Fifty percent RSM reinforced by geotextile and 75% RSM reinforced by geonets with 4 layers of reinforcement, led to a maximum increase in shear strength. The strength and energy absorption capacity are doubled for the reinforced RSM's, and reduced the brittleness index values as close to zero, which depends on the type, number of layers and arrangement of geosynthetic.  相似文献   

20.
In the recent past, the wraparound geosynthetic reinforcement technique has been recommended for constructing the geosynthetic-reinforced soil foundations. This paper presents the development of an analytical expression for estimating the ultimate bearing capacity of strip footing resting on soil bed reinforced with geosynthetic reinforcement having the wraparound ends. The wraparound ends of the geosynthetic reinforcement are considered to provide the shearing resistance at the soil-geosynthetic interface as well as the passive resistance due to confinement of soil by the geosynthetic reinforcement. The values of ultimate load-bearing capacity determined by using the developed analytical expression agree well with the model footing load test values as reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号