首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Traditional design of Hybrid photovoltaic thermal (PV/T) system has the solar cells fixed on the top of the absorber. A new PV/T system in which the solar cells are pasted on the bottom of the glass cover is suggested with the aim of realizing higher electricity output considering the lower temperature of glass cover compared with that of absorber. A numerical analysis model is set up to compare the performances of the traditional PV/T and the new PV/T in this study. It is found that compared to the traditional PV/T, the new PV/T shows higher daily electric efficiency. But this superiority is not as apparent as expected. The key point to increase the daily electric efficiency of a PV/T lies in increasing the solar energy transfer efficiency of the solar cell. The total energy gain of the new PV/T is about 7% lower than that of the traditional PV/T because of smaller mass rate and more energy loss from glass cover with higher temperature.  相似文献   

2.
The worldwide fast development of building-integrated solar technology has prompted the design alternatives of fixing the solar panels on the building façades. How to make full use of an integrative system to achieve the best energy performance can be an important area in the technology promotion. Hybrid solar system applying in buildings has the advantage of increasing the energy output per unit installed collector area. This paper describes an experimental study of a centralized photovoltaic and hot water collector wall system that can serve as a water pre-heating system. Collectors are mounted at vertical facades. Different operating modes were performed with measurements in different seasons. Natural water circulation was found more preferable than forced circulation in this hybrid solar collector system. The thermal efficiency was found 38.9% at zero reduced temperature, and the corresponding electricity conversion efficiency was 8.56%, during the late summer of Hong Kong. With the PVT wall, the space thermal loads can be much reduced both in summer and winter, leading to substantial energy savings. Suggestions were given on how to further improve the system performance.  相似文献   

3.
This study is dedicated to investigating the feasibility of photovoltaic/thermal (PV/T) collectors' technology for application in Jordan. Simple parallel-plate collector configurations were simulated using COMSOL: rectangular fins, triangular fins, and wavy walls. The wavy-wall configuration was found the most efficient alternative in terms of heat transfer with respect to the pumping power and performance factor that took into account the comparison with a plain-wall parallel-plate collector. However, the performance of the plain-wall parallel plate preceded that of the wavy wall by increasing the Reynolds number and the water channel height. The plain-wall parallel-plate configuration was further investigated on HOMER as a 5 MW solar plant that provides energy to a 5-MW facility. One MW of its load is direct thermal load. Different solar plant designs were compared. The PV/T plant was found to be very much energy saving but not feasible due to its high initial cost. However, the PV/T plant was better than the PV when the cooling was not complete compromising on some electric energy in favor of heat generation. Further work on reducing the cost of the PV/T collector is required especially with regard to contact methods between the PV and the absorber plate and to the weight of the collector.  相似文献   

4.
A calorific energy is generated during the photovoltaic conversion of the solar module which increases the temperature of the cell and will causes a fall of its electric output. This phenomenon is due, on one hand to the partial unabsorptive solar radiation which constituted the origin of the cells heating and on the other hand, with the Joule effect caused by the passage of the photo electrical current generated in the external circuit. This heating, harmful for the photovoltaic cells output involved many research efforts to limit its effects by evacuating this heat. There was also the idea to exploit this phenomenon by the combination of the photovoltaic module with a thermal system to form the photovoltaic-thermal hybrid collector (PVT) which will generate at the same time electricity and heat. In this paper we described the design of a new type of PVT collector through its experimental study. This novel collector constitutes a new technical approach to maximize the total output of conversion with lower cost compared to the traditional hybrid collectors.  相似文献   

5.
A review on photovoltaic/thermal hybrid solar technology   总被引:3,自引:0,他引:3  
A significant amount of research and development work on the photovoltaic/thermal (PVT) technology has been done since the 1970s. Many innovative systems and products have been put forward and their quality evaluated by academics and professionals. A range of theoretical models has been introduced and their appropriateness validated by experimental data. Important design parameters are identified. Collaborations have been underway amongst institutions or countries, helping to sort out the suitable products and systems with the best marketing potential. This article gives a review of the trend of development of the technology, in particular the advancements in recent years and the future work required.  相似文献   

6.
光伏光热一体化装置与热泵结合系统,既能产生电能,又可以回收热能。利用修正Hottel-Whillier模型,结合理想制冷循环,建立了光伏光热一体化装置与热泵结合系统的数学模型。通过对制冷剂流量、辐射强度及水箱水温等影响因素的分析,确定合适的蒸发温度、冷凝温度、制冷量等参数,为选择合适的节流装置和压缩机提供理论依据。  相似文献   

7.
A building-integrated photovoltaic/water-heating (BiPVW) system is able to generate higher energy output per unit collector area than the conventional solar systems. Through computer simulation with energy models developed for this integrative solar system in Hong Kong, the results showed that the photovoltaic/water-heating (PVW) system is having much economical advantages over the conventional photovoltaic (PV) installation. The system thermal performance under natural water circulation was found better than the pump-circulation mode. For a specific BiPVW system at a vertical wall of a fully air-conditioned building and with collectors equipped with flat-box-type thermal absorber and polycrystalline silicon cells, the year-round thermal and cell conversion efficiencies were found respectively 37.5% and 9.39% under typical Hong Kong weather conditions. The overall heat transmission through the PVW wall is reduced to 38% of the normal building facade. When serving as a water pre-heating system, the economical payback period was estimated around 14 years. This greatly enhances the PV market opportunities.  相似文献   

8.
The electricity conversion-efficiency of a solar cell for commercial application is about 6–15%. More than 85% of the incoming solar energy is either reflected or absorbed as heat energy. Consequently, the working temperature of the solar cells increases considerably after prolonged operations and the cell’s efficiency drops significantly. The hybrid photovoltaic and thermal (PVT) collector technology using water as the coolant has been seen as a solution for improving the energy performance. Through good thermal-contact between the thermal absorber and the PV module, both the electrical efficiency and the thermal efficiency can be raised. Fin performance of the heat exchanger is one crucial factor in achieving a high overall energy yield. In this paper, the design developments of the PVT collectors are briefly reviewed. Our observation is that very few studies have been done on the PVT system adopting a flat-box absorber design. Accordingly, an aluminum-alloy flat-box type hybrid solar collector functioned as a thermosyphon system was constructed. While the system efficiencies did vary with the operating conditions, the test results indicated that the daily thermal efficiency could reach around 40% when the initial water-temperature in the system is the same as the daily mean ambient temperature.  相似文献   

9.
Building-integrated photovoltaic/thermal (BIPV/T) systems may be utilized to produce useful heat while simultaneously generating electricity from the same building envelope surface. A well known highly efficient collector is the open-loop unglazed transpired collector (UTC) which consists of dark porous cladding through which outdoor air is drawn and heated by absorbed solar radiation. Commercially available photovoltaic systems typically produce electricity with efficiencies up to about 18%. Thus, it is beneficial to obtain much of the normally wasted heat from the systems, possibly by combining UTC with photovoltaics. Combination of BIPV/T and UTC systems for building facades is considered in this paper - specifically, the design of a prototype façade-integrated photovoltaic/thermal system with transpired collector (BIPV/T). A full scale prototype is constructed with 70% of UTC area covered with PV modules specially designed to enhance heat recovery and compared to a UTC of the same area under outdoor sunny conditions with low wind. The orientation of the corrugations in the UTC is horizontal and the black-framed modules are attached so as to facilitate flow into the UTC plenum. While the overall combined thermal efficiency of the UTC is higher than that of the BIPV/T system, the value of the generated energy - assuming that electricity is at least four times more valuable than heat - is between 7% and 17% higher. Also, the electricity is always useful while the heat is usually utilized only in the heating season. The BIPV/T concept is applied to a full scale office building demonstration project in Montreal, Canada. The ratio of photovoltaic area coverage of the UTC may be selected based on the fresh air heating needs of the building, the value of the electricity generated and the available building surfaces.  相似文献   

10.
In the present work a comparative study for thermal and electrical performance of different hybrid photovoltaic/thermal collectors designs for Iraq climate conditions have been carried out. Four different types of air based hybrid PV/T collectors have been manufactured and tested. Three collectors consist of four main parts namely, channel duct, glass cover, axial fan to circulate air and two PV panels in parallel connection. The measured parameters are, the temperature of the upper and the lower surfaces of the PV panels, air temperature along the collector, air flow rate, pressure drop, power produced by solar cell, and climate conditions such as wind speed, solar radiation and ambient temperature. The thermal and hydraulic performances of PV/T collector model IV have been analyzed theoretically based on energy balance. A Matlab computer program has been developed to solve the proposed mathematical model.The obtained results show that the combined efficiency of collector model III (double duct, single pass) is higher than that of model II (single duct double pass) and model IV (single duct single pass). Model IV has the better electrical efficiency. The pressure drop of model III is lower than that of models II and IV. The root mean square of percentage deviations for PV outlet temperature, and thermal efficiency of model IV are found to be 3.22%, and 18.04% respectively. The calculated linear coefficients of correlation (r) are 0.977, 0.965 respectively.  相似文献   

11.
将太阳能电池板、集热器、热电发电片结合起来,设计并制成了一套光伏/热电(PV/TV)系统,在利用太阳能电池发电的同时,收集热量并利用其发电。在北京地区进行了该系统的室外模拟试验,测试并讨论了该系统在不同结构和不同环境下的性能,探讨该系统在光伏建筑中的应用。试验结果表明,与单纯的光伏发电系统或太阳能热水系统相比,PV/TV系统具有占地面积小、综合效率高等优点。  相似文献   

12.
In this paper, an attempt is made to evaluate the thermal performance of a hybrid photovoltaic thermal (PV/T) air collector system. The two type of photovoltaic (PV) module namely PV module with glass-to-tedlar and glass-to-glass are considered for performance comparison. The results of both PV modules are compared for composite climate of New Delhi. Analytical expression for solar cell, back surface, outlet air temperatures and an overall thermal efficiency are derived for both cases. It is observed that hybrid air collector with PV module glass-to-glass gives better performance in terms of overall thermal efficiency. Parametric studies are also carried out.  相似文献   

13.
The present work developed a spectral splitting hybrid photovoltaic/thermal (PV/T) system based on polypyrrole nanofluid. This hybrid PV/T system can overcome the limitation of temperature in traditional PV/T, and achieve a high-temperature thermal output. In this system, the polypyrrole nanofluid employed in the spectral splitting filter can absorb the solar radiation that can't be efficiently utilized by PV cell unit, and convert it into medium-temperature thermal energy. The principle and methodology of the experimental system design was discussed, and the effect of particle concentration on the performance of system was investigated as well. The present work not only verifies the application potential of polypyrrole nanofluid in spectral splitting PV/T system, but also obtains some important rules on the performance. The results indicate that the temperature of nanofluid and the PV efficiency of cell unit itself increases with the particle concentration, but the thermal efficiency decreases simultaneously. The maximum overall efficiency of this hybrid PV/T system with polypyrrole nanofluid filter was 25.2%, which was 13.3% higher than that without filter. More importantly, the medium-temperature thermal energy can be harvested in such a hybrid system. Furthermore, an optimal particle concentration can probably realize a higher overall efficiency.  相似文献   

14.
This work describes a new control strategy for active energy flow in a hybrid photovoltaic (PV) system. The method introduces an online energy management by a hierarchical fuzzy controller between energy sources that consist of a photovoltaic panel (PVP), the battery and the load. The fuzzy logic controller has been developed for power splitting between PVP and battery, and it makes decision to choose the switching chain rules and corresponding controller. Simulation test results illustrate improvement in the operation's efficiency of online state of the switches and the battery's state of charge (SOC) has been maintained at a reasonable level. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
《Solar Cells》1986,16(2):131-138
A hybrid amorphous silicon (a-Si) photovoltaic and thermal solar collector was developed and its performance tested. The solar cells, deposited on glass panels and having an average efficiency of 4% and a total area of 0.9 m2, were bonded to the fin and tube aluminum heat-exchange plate using simple technology. This hybrid unit performed well as a thermal solar collector, heating water up to 65°C, while the electric characteristics of the photovoltaic modules showed little change. In addition to saving space this integral unit substantially reduces the balance-of-system cost of the photovoltaic generator. The transmission of light through various layers of an a-Si cell was measured and, in order to improve the thermal efficiency, a novel transparent type of a-Si cell was developed and tested in the hybrid unit. The results obtained show that it is possible to construct simple and cheap hybrid systems having good photovoltaic as well as thermal efficiencies.  相似文献   

16.
In this paper a new self-sustainable hybrid photovoltaic thermal (PV/T)-integrated-active solar still has been designed and tested for composite climate at I.I.T. New Delhi (28°32′N, 77°12′E). The PV system is used to generate electricity to run the pump (60 W and 18 V) as well as thermal energy to heat the water in the collector. The proposed design of hybrid-active solar still can be used at any remote location because of its self-sustainability. The experiments were performed on the set-up for different water depths and for different running duration of the pump. It has been observed that the hybrid-active solar still gives a higher yield (more than 3.5 times) than the passive solar still. It has also been observed that the daily distillate yield and thermal efficiency of the hybrid-active solar still remain almost the same for all water depths in the basin by reducing the daily running period of the pump from 9 to 5 h. This running period of the pump reduced saves 43% of the power used to run the pump with 9 h running, without affecting the performance of the solar still. This work also deals with exergy analysis of the system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The design of photovoltaic (PV) and photovoltaic/thermal (PV/T) solar energy conversion systems employing optical concentration requires simple models of solar cells which nevertheless have sufficient accuracy to be employed in design decisions. Semi-empirical expressions are presented for open-circuit voltage, short-circuit current, fill factor, and conversion efficiency of silicon solar cells as explicit functions of optical concentration (C) and temperature (T). In addition similar expressions are given for the solar cell current as a function of C and T and of the operating voltage V, to enable characterization under conditions of nonoptimal power transfer. The agreement of the model with experimental data is shown to be within ? 10% for all parameters. An example of an application of the model to system design is also presented.  相似文献   

18.
In the present investigation a theoretical analysis has been presented for the modelling of thermal and electrical processes of a hybrid PV/T air heating collector coupled with a compound parabolic concentrator (CPC). In this design, several CPC troughs are combined in a single PV/T collector panel. The absorber of the hybrid PV/T collector under investigation consists of an array of solar cells for generation of electricity, while collector fluid circulating past the absorber provides useful thermal energy as in a conventional flat plate collector. In the analysis, it is assumed that solar cell efficiency can be represented by a linear decreasing function of its temperature. Energy balance equations have been developed for the various components of the system. Based on the developed analysis, both thermal and electrical performance of the system as a function of system design parameters are presented and discussed. Results have been presented to compare the performance of hybrid PV/T collector coupled with and without CPC. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
Optimum photovoltaic array size for a hybrid wind/PV system   总被引:3,自引:0,他引:3  
A methodology for calculation of the optimum size of a PV array for a stand-alone hybrid wind/PV power system is developed. Long term data of wind speed and irradiance recorded for every hour of the day for 30 years were used. These data were used to calculate the probability density functions of the wind speed and the irradiance for each hour of a typical day in a month. The wind speed and irradiance probability density functions and manufacturer's specification on a wind turbine and a PV module were used to calculate the average power generated by the wind turbine and the PV module for each hour of a typical day in a month. The least square method is used to determine the best fit of the PV array and wind turbine to a given load. On the basis of the energy concept an algorithm was developed to find the optimum size of the PV array in the system  相似文献   

20.
《Energy Conversion and Management》2005,46(18-19):3034-3046
The advantages of photovoltaic/thermal (PV/T) collectors and low solar concentration technologies are combined into a photovoltaic/thermal system to increase the solar energy conversion efficiency. This paper presents a prototype 11X concentration rate and two axis tracking system. The main novelty is the coupling of a linear Fresnel concentrator with a channel photovoltaic/thermal collector. An analytical model to simulate the thermal behaviour of the prototype is proposed and validated. Measured thermal performance of the solar system gives values above 60%. Theoretical analysis confirms that thermal conduction between the PV cells and the absorber plate is a critical parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号