首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为在建筑结构设计时考虑地震引发火灾对建筑结构的作用和影响,提出建筑结构地震火灾效应分析计算方法,此方法结合结构地震反应分析与火灾热力反应分析,通过简化的建筑结构地震损伤模型,考虑地震损伤的同时,连接结构的热传导分析与热力分析,从而实现地震火灾效应计算.运用此方法对一单层和一多层混凝土框架分别进行了分析,并与没有考虑地震...  相似文献   

2.
Numerical Simulation of the Response of Fire Exposed Concrete Structure The proposed numerical model for concrete and reinforced concrete structures subjected to fire comprises the transient thermal and mechanical analysis considering the temperature dependent material properties of concrete and reinforcing steel within the framework of the phenomenological approach of the Eurocode 2, part 1‐2. A concrete model, based on the combination of plasticity and damage theory, serves as the basis for the material model of concrete for high temperatures. For reinforcing steel a standard elastic‐plastic material model is employed. The proposed model is validated by the numerical simulation of fire tests on plain concrete specimens and by the numerical simulation of a large scale fire test on a reinforced concrete slab. Furthermore it is used to determine the structural integrity of a tunnel structure, put up by the cut‐and‐cover method, exposed to fire.  相似文献   

3.
To avoid underestimating the severity of damage to tunnel concrete lining under the high-temperature conditions of a fire using thermal analysis, it is important to consider the cross-sectional loss of a concrete lining during heating. This study simulates the structural loss by numerical analysis using an element elimination model and a combined heat transfer coefficient. A series of fire tests was performed with fire curves that differed in the initial temperature gradient and maximum temperature. Values of the optimized combined heat transfer coefficient were obtained from the coincidence of the results of the numerical analysis with experimental data. The results reveal that an increase in both the initial temperature gradient and maximum temperature causes greater damage to the concrete structures and also gives rise to an increase in the combined heat transfer coefficient. Values of the combined heat transfer coefficient can be inferred from values of initial temperature gradient and maximum temperature in the case of structural concrete loss. Two sets of regression equations were derived from the results depending on whether or not a structural loss occurs. The proposed method of thermal analysis outperforms the conventional method in terms of accurately simulating observed results.  相似文献   

4.
混凝土材料在高温作用下的力学性能研究对混凝土结构防火设计和火灾损伤评估具有重要意义。构建了混凝土火灾损伤本构模型,引入热损伤反映温度对混凝土弹性模量、抗拉强度、抗压强度等力学参数的影响,考虑到混凝土受拉和受压状态下的不同的损伤特性,将混凝土材料的损伤分为受压损伤、受拉损伤和热损伤三种。建立了损伤演化、塑性流动以及内变量演化方程,通过塑性-损伤耦合,描述了不同温度和应力状态下混凝土的应力-应变特性,证明了模型严格符合热力学定律。利用所建立的本构模型对不同温度下的混凝土单轴拉伸、压缩试验进行了模拟计算,计算结果与试验结果能较好地吻合,证明了模型的合理性。  相似文献   

5.
钢-混凝土组合结构抗火性能研究与应用   总被引:2,自引:0,他引:2       下载免费PDF全文
钢-混凝土组合结构抗火性能研究是当前的研究热点之一,国内外学者对此展开大量试验研究和理论分析。通过介绍国内外研究者在组合板、组合梁、组合柱等构件以及结构节点和结构体系抗火性能方面研究概况,分析了我国现有防火设计规范的特点以及工程应用情况,指出现有研究的不足,对组合结构抗火研究领域在高温材料热-力耦合本构关系、计算理论、数值火灾试验和设计方法等方面需进一步研究的工作进行了展望。文中指出,建立考虑升降温、多轴应力状态、不同加卸载路径的钢材和混凝土热-力耦合本构关系,建立基于整体性能、考虑升降温全过程的结构抗火分析理论,建立整体结构数值火灾试验方法,提出“三水准”结构抗火设计与灾后结构损伤评估原则以及基于时变可靠度和结构整体性能的组合结构抗火设计方法是钢-混凝土组合结构抗火性能研究的关键科学问题。表2参119  相似文献   

6.
根据红外热像检测原理,采用红外热像仪检测火灾损伤的钢筋混凝土结构,分析其受火温度、强度损失及损伤深度,并综合评价其损伤等级。现场检测实践表明,钢筋混凝土结构火灾损伤的红外热像检测与评估,可快速获取比较全面翔实的建筑物火灾损伤资料,从而为修复加固工程提供科学可靠的依据。  相似文献   

7.
Projectiles, such as turbine blades, can be released in an accident and impact structures. Airplanes and other flying objects can also become impact projectiles. These impacts occasionally cause fire when fire loads, such as oil, fuel, and other combustible materials, are present. This study examines the thermal insulation performance of concrete plates and the structural fire behavior of load-bearing reinforced concrete walls that are exposed to fire after a high-velocity impact by a hard projectile. Impact and fire tests were carried out using small-scale concrete plates and reinforced concrete walls. The results show the influence of local damage and the advantage of short-fiber reinforced concrete subjected to impact loads and fire.  相似文献   

8.
显微岩相学方法是分析混凝土火灾损伤程度的有效手段之一,但是不适当的样品制备过程可能导致错误判断.在总结常用的显微分析样品制备过程中可能出现问题的基础上,根据火灾损伤混凝土在样品制备过程中较易受损的特点,提出了建议的样品制备方法.  相似文献   

9.
Although the number of terror-and explosion-related incidents associated with military and terrorist activities is increasing globally, the existing design procedure for civil infrastructures does not consider a protective design for extreme loading scenarios such as blast, impact, and fire loading. Major infrastructure, for example bridges, tunnels, prestressed concrete containment vessels (PCCVs), and liquefied natural gas (LNG) storage tanks are often constructed using prestressed concrete, because it enhances the structural capacity. Concrete is often used as a construction material because of its low thermal conductivity, which makes it a good fire resistant material. However, the fire-resistant behavior of the high-strength concrete (HSC) and prestressing (PS) tendons used in prestressed concrete (PSC) is different than that of ordinary reinforced concrete (RC). Also, there has been limited research comparing PSC to RC under extreme loading conditions. This study presents experimental testing of unbonded bi-directionally prestressed concrete panels with dimensions 1000×1400×300 mm3 that were tested under RABT fire loading to simulate a jet aircraft crash-fire accident. A prestressing force of 430 kN was applied to the PSC specimens using unbonded threaded bars. After a RABT fire test, residual flexural strength tests were performed on the fire-damaged PSC and on RC specimens for comparison. Results of the RABT fire and residual flexural strength tests indicated that the fire-damaged PSC specimens showed severe thermal spalling damage induced by PS relaxation and deterioration of strength/stiffness, respectively. These study results can be used as basic research data for future research in numerical simulation of fire and the design of PSC structures under the fire scenario.  相似文献   

10.
Abstract:  This article presents a damage detection method for prestressed reinforced concrete (PRC) elements based on free vibration tests and nonlinear damping identification. Integrated static and dynamic experiments were carried out on three precast PRC beam specimens. The static loading induced different levels of damage to the beams. At each damage level, impulsive loading was applied to the beams and the free vibration response was measured. The dynamic response data were processed using different methods including the multi-input multi-output (MIMO) curve fitting and the Hilbert transform techniques. A strong correlation is observed between the level of concrete damage (cracks) and the amount of nonlinear energy dissipation that can be modeled by means of quadratic damping. The nonlinear damping can be extracted from the free vibration response for each vibration mode. The proposed method is suited for quality control when manufacturing precast PRC members, and can be further extended for in situ detection of damage in concrete structures under ambient vibration.  相似文献   

11.
A nonlinear structural analysis of cross-sections of three-dimensional reinforced concrete frames exposed to fire is presented. The analysis includes two steps: the first step is the calculation of the transient temperature field in cross-sections exposed to fire and the second step is the determination of the mechanical response due to the effect of thermal and mechanical load. A nonlinear finite-element procedure is proposed to predict the temperature field history. In this thermal analysis, the effect of moisture has been taken into account by introducing a water vapor fraction function to define the variation of enthalpy. A mechanical nonlinear analysis of the cross-sections is performed for each temperature distribution and for the applied exterior load using an algorithm of arc-length control. The mechanical and thermal properties of concrete and steel are taken according to the European Standard ENV 1991-1-2 [ENV. Eurocode 2, design of concrete structures, part 1–2: general rules—structural fire design. ENV 1992-1-2, 1995]. In order to validate the proposed thermal and mechanical models, comparisons between numerical and experimental results have been performed. The agreement found is in both cases, fairly good. In addition, a numerical example of the structural analysis of several cross-sections of a reinforced concrete waffle slab under external load and fire is shown.  相似文献   

12.
Fire resistance of concrete structural members can be enhanced through the application of external fire insulation on the surfaces of concrete member. For evaluating fire resistance of such insulated RC members, temperatures in concrete and steel reinforcement are to be known. This paper develops a simplified approach for predicting cross-sectional temperatures in an insulated RC structural member exposed to standard fire. The approach is derived by replacing the insulation layer into an equivalent concrete thickness layer and then undertaking statistical regression analysis on temperature data of modified concrete section. The effect of critical parameters, including geometry of concrete member and insulation, thermal properties of concrete and fire insulation, and duration of fire exposure is accounted for in temperature equations. The validity of the approach is established by comparing predictions from the proposed equation with data generated from fire tests and finite element analysis. These comparisons show the proposed equation gives reasonable prediction of temperatures, within a range of ±10%, in insulated concrete members. The applicability of the proposed approach in design situations is illustrated though a numerical example. The simplicity of the proposed method makes it attractive for use in design situations and for incorporation in design manuals.  相似文献   

13.
《Fire Safety Journal》2007,42(6-7):452-460
Research has demonstrated that fibre-reinforced polymers (FRPs) can be used efficiently and safely in strengthening and rehabilitation of reinforced concrete structures. However, the use of FRPs in buildings has been limited because relatively little is known about the behaviour in fire of reinforced concrete structural members that have been strengthened with FRP systems. This paper presents the recent results of an ongoing experimental study of the fire performance of FRP-wrapped reinforced concrete circular columns. The results of fire tests on two columns are presented, one of which was tested without supplemental fire protection, and one of which was protected by a supplemental fire protection system applied to the exterior of the FRP-strengthening system. The primary objective of these tests was to compare the fire behaviour of the two FRP-wrapped columns and to investigate the effectiveness of the supplemental insulation system. The thermal and structural behaviour of the two columns are discussed. The results show that, although FRP systems are sensitive to high temperatures, satisfactory fire endurance ratings can be achieved for reinforced concrete columns that are strengthened with FRP systems by providing adequate supplemental fire protection. In particular, the insulated FRP-strengthened column in this study was able to resist elevated temperatures during the fire tests for at least 90 min longer than the equivalent uninsulated FRP-strengthened column.  相似文献   

14.
以某地铁车库火灾后受损板为例,通过显微结构分析、结构物理力学性能检测、现场原位荷载试验等方法,对火灾后受损板进行了检测鉴定与加固维修研究。研究火灾后受损混凝土结构的检测鉴定内容与方法,为灾后结构的损伤评价及后续的维修与加固提供技术依据。提出了一种火灾后受损结构鉴定评级层次划分与评级标准,可补充火灾后混凝土结构损伤程度的评级问题。根据检测鉴定结果评定火灾受损结构构件的损伤等级,对不同程度受损的结构构件进行了加固与维修设计。通过加固与维修,消除了火灾后结构的安全隐患,提高了结构的承载力与耐久性。  相似文献   

15.
根据红外热成像及电化学检测原理 ,采用红外热成像与电化学等检测方汉匹配组合 ,由表及里地检测分析火灾钢筋混凝土结构的受火温度、强度损失及损伤深度 ,并综合评价其损伤等级。现场检测实践表明 :钢筋混凝土结构火灾损伤的红外热像 -电化学综合检测与评估可快速获取比较全面翔实的建筑物火灾损伤资料 ,从而为修复加固工程提供科学可靠的依据  相似文献   

16.
介绍了火灾后混凝土结构的各类检测方法。提出了逐层回弹法检测火灾后混凝土强度的方法。进行了逐层回弹法检测火灾后混凝土强度的试验,对试验数据进行数学回归分析,得出了逐层回弹法测强曲线。研究结果对回弹法应用于火灾后混凝土强度的检测有实际意义。  相似文献   

17.
为分析和模拟多层混凝土框架结构在火灾下的反应规律及其破坏过程,基于建筑结构分析中常用的纤维梁单元,建立了钢筋混凝土梁、柱构件的火灾破坏数值模型。模型将构件截面划分成多个纤维,可以考虑构件截面的不均匀温度场分布以及材料非线性和几何非线性问题。对单层单跨混凝土框架进行火灾反应分析,并与试验结果进行比较,验证了此数值模型的准确性。通过对多层框架进行火灾反应模拟,比较不同火灾场景的模拟结果,分析其反应规律以及破坏过程。结果表明,纤维梁单元模型可以较好地模拟钢筋混凝土结构的受火破坏过程,并且火灾发生的位置不同,结构的破坏机制也不同,一定条件下蔓延的火灾比不蔓延的火灾对多层混凝土框架结构的破坏性更大。分析结果可以为实际结构的防火设计提供参考。  相似文献   

18.
为了研究高温对新老混凝土粘结性能的影响,本文对既有混凝土经历高温后再与新混凝土粘结和新老混凝土粘结后再经历高温两种类型的Z形粘结试件进行了剪切试验研究,总结了影响粘结面剪切性能因素(温度、冷却方式、界面粗糙度和界面剂)的影响规律,提出了温度对粘结面剪切强度和剪应力滑移关系的影响计算公式,建立了高温后粘结剪切强度的多因素统一计算公式。在试验的基础上,分析了高温对新老混凝土粘结的损伤机理,并给出了火灾后混凝土结构进行粘结修补的建议。  相似文献   

19.
火灾混凝土钢筋损伤的电化学检测与评估   总被引:2,自引:0,他引:2  
根据钢筋锈蚀电化学检测的基本原理,依据电化学三要素对火灾混凝土钢筋损伤进行了试验研究,建立了火灾混凝土钢筋损伤的电化学判定准则和辅助分析模型,然后运用上述准则和模型对实际火灾混凝土结构进行了诊断评估.  相似文献   

20.
为研究采用外包薄壁钢管、内灌自流平微膨胀灌浆料约束加固受火后钢筋混凝土柱的偏压性能,进行了2根未受火混凝土柱、2根受火后混凝土柱和6根受火后再加固的混凝土柱的受压试验研究,分析了不同荷载偏心率对外包薄壁钢管加固受火后钢筋混凝土柱偏压承载性能的影响规律。考虑外包薄壁钢管的约束效应和高温对混凝土损伤影响,给出了外包薄壁钢管加固受火后混凝土柱偏压承载力的简化计算方法。结果表明:荷载偏心率为0、0.87的混凝土柱受火90 min后,其极限荷载分别降低了30.3%、47.4%;外包薄壁钢管对受火后混凝土轴压柱的加固效果较好,对偏压柱的加固效果略有降低,受火后荷载偏心率为0、0.87混凝土柱经加固后极限荷载分别比对应的未受火混凝土柱提高2%、降低4.7%;外包薄壁钢管加固可显著提高混凝土柱的延性;当荷载偏心率不超过1.07时,加固后试件的极限荷载随荷载偏心率的增加近似呈线性降低;提出的外包薄壁钢管加固受火后混凝土柱偏压承载力的简化计算方法,其计算结果与试验结果吻合良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号