首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of power sources》2005,145(2):702-706
An integrated microchannel methanol processor was developed by assembling unit reactors, which were fabricated by stacking and bonding microchannel patterned stainless steel plates, including fuel vaporizer, heat exchanger, catalytic combustor and steam reformer. Commercially available Cu/ZnO/Al2O3 catalyst was coated inside the microchannel of the unit reactor for steam reforming. Pt/Al2O3 pellets prepared by ‘incipient wetness’ were filled in the cavity reactor for catalytic combustion. Those unit reactors were integrated to develop the fuel processor and operated at different reaction conditions to optimize the reactor performance, including methanol steam reformer and methanol catalytic combustor. The optimized fuel processor has the dimensions of 60 mm × 40 mm × 30 mm, and produced 450sccm reformed gas containing 73.3% H2, 24.5% CO2 and 2.2% CO at 230–260 °C which can produce power output of 59 Wt.  相似文献   

2.
Direct borohydride fuel cell (DBFC) as a liquid type fuel cell is promising for portable applications. In this study, we report our recent progress in the micro-fuel cell development. A power density of 80 mW cm−2 was achieved in passive mode at ambient conditions when using the anode containing nickel, carbon-supported Pd catalyst and Nafion ionomer. Current efficiency was also found to be greatly increased due to the use of Nafion rather than polytetrafluoroethylene (PTFE). Based on improvements on single cell performance, planar multi-cell power modules were assembled to study the feasibility of making high-performance and practical DBFC power units. A power of 2.5 W was achieved in a fully passive eight-cell module after significantly simplifying cell structure.  相似文献   

3.
This paper presents modeling, design and analysis of a Grid-connected Hybrid Photovoltaic Fuel Cell System (HPVFCS) with a reactive power compensation feature. A hydrogen based fuel cell is a proven technology and its use along with the photovoltaic system (PV) can lead to energy stability in grid-connected or standalone systems. In this paper, the Voltage Source Converter (VSC) is connected between the DC output of HPVFCS and an AC grid. The control strategy employed guarantees the maximum utilization of the PV array and the optimum use of an FC. The active and reactive power of VSC can be controlled independently using P-Q control theory. The additional function of the reactive power compensation using P-Q control theory can enhance the performance of the distribution systems where HPVFCS system is connected. Its applicability is verified by the test bench created with MATLAB/Simulink®  相似文献   

4.
Ammonia borane (AB, NH3BH3) is considered to be a promising hydrogen storage material as it contains 19.6 wt% hydrogen. It is difficult, however, to release hydrogen from AB. Thermolysis, catalytic hydrolysis and heat generated by additional reactive mixtures are usually employed, but these methods have disadvantages that limit their use for portable applications. In this paper, we demonstrate a new approach to release hydrogen, which does not require any catalyst and produces relatively high hydrogen yield and environmentally benign byproducts. It involves nano-aluminum (nAl)/water combustion reaction, which provides heat for AB dehydrogenation and releases additional hydrogen from water. To facilitate higher H2 yield from thermolysis, as compared to hydrolysis, AB is spatially separated from the nAl/water mixture using a concentric cylindrical container. The effect of the container design on hydrogen generation is studied and optimized. This study also includes transient temperature and pressure measurements, and product characterization using mass spectrometer and 11B NMR. This approach provides H2 yield up to 9.5 wt% on material basis. Our experimental results and analysis show that a proposed power source based on this method is promising for portable electronic devices.  相似文献   

5.
A new fuel processor approach for portable fuel cell power sources significantly improves upon microreformers by overcoming the difficulties with heat deficiencies and contaminants in the product hydrogen. Instead of reforming, the processor uses methanol decomposition to enable the byproduct, carbon monoxide (CO), to be used as the heat source. A hydrogen permselective membrane segregates the CO for combustion in an integrated burner, maximizes the decomposition conversion, and provides pure hydrogen for a fuel cell. Discharging the CO-rich retentate through an ejector to draw combustion air into the burner greatly simplifies the system. High and stable hydrogen yields are attained with optimized catalysts and fuel compositions. The resultant simple, efficient, and self-heating processor produces 85% of the hydrogen content of the fuel. A 20 W autonomous power source based on this novel fuel processor demonstrates a fuel energy density >1.5 Wh g?1(electrical), nearly twice as high as microreformer power sources.  相似文献   

6.
To investigate the possibility of the portable application of a direct borohydride fuel cell (DBFC), weight reduction of the stack and high stacking of the cells are investigated for practical running conditions. For weight reduction, carbon graphite is adopted as the bipolar plate material even though it has disadvantages in tight stacking, which results in stacking loss from insufficient material strength. For high stacking, it is essential to have a uniform fuel distribution among cells and channels to maintain equal electric load on each cell. In particular, the design of the anode channel is important because active hydrogen generation causes non-uniformity in the fuel flow-field of the cells and channels. To reduce the disadvantages of stacking force margin and fuel maldistribution, an O-ring type-sealing system with an internal manifold and a parallel anode channel design is adopted, and the characteristics of a single and a five-cell fuel cell stack are analyzed. By adopting carbon graphite, the stack weight can be reduced by 4.2 times with 12% of performance degradation from the insufficient stacking force. When cells are stacked, the performance exceeds the single-cell performance because of the stack temperature increase from the reduction of the radiation area from the narrow stacking of cells.  相似文献   

7.
A micro fuel cell system designed to power complex autonomous systems with dynamic pulse-shaped loads like wireless sensor nodes is presented in this work. The requirements posed by the corresponding pulse load profiles are considered for the design of the passive self-breathing micro fuel cell. The performance of the fuel cell is mainly affected by the oxygen and water management which is influenced by the openings in the cathodic current collector. Due to the comparatively low average cell current the performance can be strongly improved by retaining water within the cell using a reduced opening ratio and thus improving the ionic conductivity of the electrolyte.  相似文献   

8.
An experiment assessment of hydrogen production from activated aluminum alloy in portable hydrogen generator for fuel cell applications was investigated. The optimum hydrogen capacity of the high–reactive Al–Bi–NaCl alloys (the abbreviation of milled material of aluminum, bismuth and NaCl particles) is about 9–9.4 wt.%, meeting the targets (9 wt.%) of the US Department of Energy in 2015. Hydrogen production rate can be controlled via controlling the water flow rate in the generator, being 1.369–6.198 L hydrogen/min while the water flow rate ranges in 5–20 mL/min. The larger water flow rate often leads to higher temperature and results in unsafety in the generator as the hydrolysis reaction of aluminum alloy and water releases 15 kJ/g heat. However, the heat problem can be successfully eliminated by using effective cooling stytles, which enable the maximum temperature of Al–H2O mixture (the abbreviation of hydrolysis products of aluminum alloy in water) controlled less than 474 K even though the water flow rate is 20 mL/min. Therefore, the experiment results show that the portable hydrogen generator from aluminum alloy could supply the CO2–free, high hydrogen capacity and safe hydrogen for fuel cell applications.  相似文献   

9.
This study examines the feasibility of powering a range of portable devices with a direct methanol fuel cell (DMFC). The analysis includes a comparison between a Li-ion battery and DMFC to supply the power for a laptop, camcorder and a cell phone. A parametric study of the systems for an operational period of 4 years is performed. Under the assumptions made for both the Li-ion battery and DMFC system, the battery cost is lower than the DMFC during the first year of operation. However, by the end of 4 years of operational time, the DMFC system would cost less. The weight and cost comparisons show that the fuel cell system occupies less space than the battery to store a higher amount of energy. The weight of both systems is almost identical. Finally, the CO2 emissions can be decreased by a higher exergetic efficiency of the DMFC, which leads to improved sustainability.  相似文献   

10.
The current evolution in the design of fuel cell systems, together with the considerable development of integrated control techniques in microprocessor systems allows the development of portable fuel cell applications in which optimized control of the fuel cells performance is possible. Control, in the strict sense, implies a thorough knowledge of both the static and dynamic behaviour of the system comprising the stack, manifold and the compressor that enables oxygen supply. The objective of this control, far from being simply to maintain the stack free from oxygen and hydrogen shortages, is to achieve the necessary values of these gases, minimizing compressor consumption, which is the cause of the greatest inefficiency of fuel cells. This objective is essential when fuel cell systems are involved in situations where the net power of the stack is reduced and any unnecessary consumption lowers the total power available to the user. The design of an efficient control system requires the following steps: (1) modeling of the stack, compressor and other pneumatic elements involved in the system. (2) Calculation of the control equations and simulation of the entire system (including control). (3) Emulation of the stack and other pneumatic elements and simulation utilizing the designed control system. (4) Physical realization of the control system and testing within the fuel cell system. The design of a control system for fuel cell systems is introduced to manage PEMFC stacks. The control system will guarantee the correct performance of the stack around its optimal operation point, in which the net power is maximized. This means that both, the air flow and the stack temperature are controlled to a correct value.  相似文献   

11.
The impact of structural parameters and operating conditions has not been researched yet for vapor-fed operation of a DMFC at near-ambient conditions. Thus, a detailed parameter study that included reference cell measurements to assess anode and cathode losses separately was performed. Among other parameters like temperature or air stoichiometry, different opening ratios that controlled evaporation of methanol into the vapor chamber were examined.  相似文献   

12.
This study presents a novel fuel sensor-less control scheme for a liquid feed fuel cell system that does not rely on a fuel concentration sensor. The proposed approach simplifies the design and reduces the cost and complexity of a liquid feed fuel cell system, and is especially suited to portable power sources, of which the volume and weight are important. During the reaction of a fuel cell, the cell's operating characteristics, such as potential, current and power are measured to control the supply of fuel and regulate its concentration to optimize performance. Experiments were conducted to verify that the fuel sensor-less control algorithm is effective in the liquid feed fuel cell system.  相似文献   

13.
One of the major challenges in direct methanol fuel cells (DMFCs) is to design reliable and stable FC systems that satisfy the very high dynamic demand in various environmental conditions for portable devices. This paper provides an overview of several failure modes and effect analyses (FMEAs) which can have significant consequences on the durability and stability of DMFCs, including high and sub-zero temperature storage, dry and high humidification atmospheres, and fuel/oxidation starvation by breakdown of fuel/air supply components. Firstly, some characterization methods are discussed to investigate changes of membrane electrode assemblies (MEAs) in terms of their physiochemical and electrochemical properties after testing in various simulated failure modes. Secondly, possible mitigating solutions to minimize the hazards associated with them are suggested through a fundamental understanding and scientific approach. The relationship between the causes and symptoms in DMFC systems is determined by examining a variety of failure sources.  相似文献   

14.
In the future, hydrogen-based stationary and portable fuel cell systems can help supply some or all of the power demanded with additional advantages of higher reliability, lower emissions, independence from the general grid, and cogeneration capability. In order to understand how to prepare the future for this technology, this paper describes a thorough investigation of past alternative stationary and portable power projects in order for an assessment of the opportunities for stationary and portable fuel cell markets, as well as interactions with transportation hydrogen systems. The lessons learned from the programs are used to establish best practices and recommendations for a hydrogen strategy that addresses opportunities for hydrogen in power generation systems, as well as to make recommendations for market transformation within the hydrogen fuel cell industry.  相似文献   

15.
Fuel economy and emission abatement are issues, which are highly prioritized areas in the automotive industry of today. The debate about climate change has in recent years even more emphasized the importance of these issues and has increased the search for finding sustainable technical solutions. This paper describes an effort to develop an innovative and environmentally-benign hydrogen generation system operating on commercial diesel fuel to avoid running the engine to supply electricity at stand-still. The use of a fuel cell-based auxiliary power unit (APU) has the potential of delivering electricity at high efficiencies independent of the heavy-duty truck engine. During the reformer development phase, spray formation and mixing of reactants proved to be crucial to obtain high reforming efficiencies and low diesel slip. The diesel is being injected through a nozzle creating a spray of fine droplets of a size which can establish rapid evaporation. Air and steam are being pre-heated and injected into the mixture chamber and subsequently mixed with the evaporated diesel fuel. Depending on the operating parameters, a part of the fuel is being oxidized and produces heat. Autothermal reforming was chosen to circumvent the heat transfer problem in catalytic steam reforming. By supplying heat directly to the catalyst surface by an oxidation reaction the heat demand of the strongly endothermic steam reforming reaction can be fulfilled. We employed CFD calculations, which revealed the importance of avoiding large recirculation zones leading to a prolonged residence time of the hydrocarbon molecules and causing auto-ignition and excessive temperatures in the catalyst. Five different reformer generations are being described and discussed in detail in this publication. The first one was based on a fixed bed reactor, while the other four all relied on catalytic monoliths enabling low pressure drops. The early reactor designs all suffered from auto-ignition and instability problems. The latter generations exhibited a considerably more stable temperature profile in the reformer. The conversion of diesel and the reformer efficiencies are significantly higher than the early generation diesel reformers.  相似文献   

16.
Power assisted fuel cell   总被引:2,自引:0,他引:2  
A hybrid fuel cell demonstrated pulse power capability at pulse power load simulations synonymous with electronics and communications equipment. The hybrid consisted of a 25.0 W Proton Exchange Membrane Fuel Cell (PEMFC) stack in parallel with a two-cell lead-acid battery. Performance of the hybrid PEMFC was superior to either the battery or fuel cell stack alone at the 18.0 W load. The hybrid delivered a flat discharge voltage profile of about 4.0 V over a 5 h radio continuous transmit mode of 18.0 W.  相似文献   

17.
Continuous developments in Proton Exchange Membrane Fuel Cells (PEMFC) make them a promising technology to achieve zero emissions in multiple applications including mobility. Incremental advancements in fuel cells materials and manufacture processes make them now suitable for commercialization. However, the complex operation of fuel cell systems in automotive applications has some open issues yet. This work develops and compares three different controllers for PEMFC systems in automotive applications. All the controllers have a cascade control structure, where a generator of setpoints sends references to the subsystems controllers with the objective to maximize operational efficiency. To develop the setpoints generators, two techniques are evaluated: off-line optimization and Model Predictive Control (MPC). With the first technique, the optimal setpoints are given by a map, obtained off-line, of the optimal steady state conditions and corresponding setpoints. With the second technique, the setpoints time profiles that maximize the efficiency in an incoming time horizon are continuously computed. The proposed MPC architecture divides the fast and slow dynamics in order to reduce the computational cost. Two different MPC solutions have been implemented to deal with this fast/slow dynamics separation. After the integration of the setpoints generators with the subsystems controllers, the different control systems are tested and compared using a dynamic detailed model of the automotive system in the INN-BALANCE project running under the New European Driving Cycle.  相似文献   

18.
Effective thermal integration could enable the use of compact fuel processors with PEM fuel cell-based power systems. These systems have potential for deployment in distributed, stationary electricity generation using natural gas. This paper describes a concept wherein the latent heat of vaporization of H2O is used to control the axial temperature gradient of a fuel processor consisting of an autothermal reformer (ATR) with water gas shift (WGS) and preferential oxidation (PROX) reactors to manage the CO exhaust concentration. A prototype was experimentally evaluated using methane fuel over a range of external heat addition and thermal inputs. The experiments confirmed that the axial temperature profile of the fuel processor can be controlled by managing only the vapor fraction of the premixed reactant stream. The optimal temperature profile is shown to result in high thermal efficiency and a CO concentration less than 40 ppm at the exit of the PROX reactor.  相似文献   

19.
Two power conditioning systems for superconductive magnetic energy storage (SMES) are presented. One power conditioning system is based on a hybrid current sourced inverter (CSI), the second is a combination of a DC chopper with a voltage sourced inverter (VSI). Both of these systems have independent control of real and reactive power. These systems have a significant reduction in MVA rating levels as related to the more traditional Graetz bridge  相似文献   

20.
There are several methods for producing hydrogen from solar energy. Currently, the most widely used solar hydrogen production method is to obtain hydrogen by electrolyzing the water at low temperature. In this study, solar hydrogen production methods, and their current status, are assessed. Solar-hydrogen/fuel cell hybrid energy systems for stationary applications, up to the present day are also discussed, and preliminary energy and exergy efficiency analyses are performed for a photovoltaic-hydrogen/fuel cell hybrid energy system in Denizli, Turkey. Three different energy demand paths – from photovoltaic panels to the consumer – are considered. Minimum and maximum overall energy and exergy efficiencies of the system are calculated based on these paths. It is found that the overall energy efficiency values of the system vary between 0.88% and 9.7%, while minimum and maximum overall exergy efficiency values of the system are between 0.77% and 9.3% as a result of selecting various energy paths. More importantly, the hydrogen path appears to be the least efficient one due to the addition of the electrolyzer, the fuel cells and the second inverter for hydrogen production and utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号