首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aging behaviors of indium tin oxide (ITO) anodes treated by supercritical CO2/H2O2 (SCCO2/H2O2) fluids were investigated. As the SCCO2/H2O2-treated ITO anodes were aged, the contact angle and surface energy were analyzed and compared with those of the ITO anodes treated by oxygen plasma. The SCCO2/H2O2 pretreatment yielded a stable polar component of the ITO surfaces after 48 h of aging. The energy reduction in the polar component of the oxygen-plasma-treated ITO due to aging was 20 %, as compared with the 1.1 % decrease in ITO treated with the SCCO2/H2O2 fluids at 4000 psi for 15 min. The X-ray photoelectron spectroscopy analysis revealed that the oxygen content of the ITO surfaces with the SCCO2/H2O2 pretreatment was significantly higher than that of the ITO treated by oxygen plasma. This could result from the formation of hydroxyl products that functioned as a stable buffer layer against further contamination during aging. In addition, the correlated dependence of the OLED performance on the aged ITO anodes was also studied. The OLEDs with the SCCO2/H2O2 pretreatment showed an improved degradation of I–V characteristics and brightness in comparison with those of the devices treated with oxygen plasma after aging the treated ITO anodes for 6 and 12 h. The obtained results suggested that the ITO anodes treated by the SCCO2/H2O2 fluids exhibited a stable surface chemistry and could be useful for OLED applications.  相似文献   

2.
Transformations in indium nanolayers have been studied by optical spectroscopy, microscopy, and gravimetry in relation to the thickness of the layers (2–147 nm) and heat treatment temperature (473–873 K) and time (0–120 min). The kinetic curves for the degree of conversion are adequately described by a linear, inverse logarithmic, parabolic, or logarithmic law, depending on the thickness of the indium film and heat treatment temperature. We have measured the contact potential difference across the In and In2O3 films and the photovoltage in the In-In2O3 system. The results have been used to derive the energy band diagram of the In-In2O3 system. A model has been proposed for the thermal transformation of indium films, which involves oxygen adsorption steps, charge carrier redistribution in the In-In2O3 interfacial field (positive on the In2O3 side), and In2O3 formation.  相似文献   

3.
Model investigations of the effect of the initial composition of a HBr/H2mixture on the stationary parameters of a dc glow discharge plasma (p = 30−250 Pa, i p = 20 mA) have been carried out. Calculation data on energy distributions of electrons, integral characteristics of the electron gas, and concentrations of neutral and charged particles have been obtained.  相似文献   

4.
The formation and the thickness growth of the (Bi,Pb)2Sr2Ca2Cu3O10 phase in Ag-sheathed tapes have been investigated by scanning electron microscopy on samples sintered at 840°C in a flow of 8.5% O2 (rest N2) and quenched in air after sintering for 1 to 50 h. The thickness of the (Bi,Pb)2Sr2Ca2Cu3O10 grains was measured statistically after different sintering times. The experimental results show that the average thickness of these grains increases during the entire sintering period, while the average thickness growth rate decreases exponentially with sintering time. The volume fractions of the various phases present during the heat treatment were also measured from micrographs. Detailed studies of the microstructure and phase formation kinetics support the view that the formation of the (Bi,Pb)2Sr2Ca2Cu3O10 phase proceeds via a nucleation and growth process. Based on the present observations, a model describing the microstructure evolution is presented.  相似文献   

5.
The phase formation and reaction kinetics in the TiO2-Cr2O3 system have been studied by x-ray diffraction and electron microscopy. The Cr2O3 solubility in TiO2 has been accurately determined, and the rate parameters of the formation of solid solutions in this system have been evaluated. The results demonstrate that Cr2O3 dissolves in rutile and not in anatase. Cr2O3 markedly reduces the temperature of the anatase-rutile phase transition.  相似文献   

6.
The kinetics of the UO2 dissolution in the N2O4-H2O system was studied. At 25°C, the process is kinetically controlled, whereas at 55°C the process occurs initially under kinetic control (3 min) and then under diffusion-kinetic control. At 80°C, the process occurs exclusively under diffusion-kinetic control. The apparent activation energy was estimated at ∼39 kJ mol−1.  相似文献   

7.
Hollow CoFe2O4 spheres consisted of CoFe2O4 nanoparticles were synthesized by a facile solvothermal treatment of an ethylene glycol solution of FeCl3 · 6H2O, CoCl2 · 6H2O, and NaAc at 200 °C in the presence of polyethylene glycol and oleic acid. The products were characterized by powder X-ray diffraction, transmission electron microscopy, selected area electron diffraction, high-resolution transmission microscopy, scanning electron microscopy. The magnetic properties were evaluated using a vibrating sample magnetometer. The probable mechanism of the formation of Hollow CoFe2O4 spheres was discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Eu2+ and Tb3+ doped Ca2MgSi2O7 phosphors were synthesized by conventional solid-state reaction. The phase formation was confirmed by X-ray powder diffraction technique and refined lattice parameters were calculated by rietveld refinement process using Celref v3. The photoluminescence (PL) excitation and emission spectra were investigated. The phosphors exhibited broaden green emitting luminescence peaking at 520 nm when excited at 374 nm source. Morphological studies were carried out using Scanning electron microscopy (SEM) images of the sample with optimum PL emission. The dependence of photoluminescence intensity on co-dopant concentration and the kinetic parameters were also reported. Time resolved fluorescence spectroscopy (TRFS) is used to investigate the decay in luminescence signals with respect to time. The sample proved to be a good long lasting material, which makes it useful in emergency signs, textile printing, textile exit sign boards and electronic instrument dial pads etc.  相似文献   

9.
Data are presented on the thermal oxidation of (V2O5 + PbO)/InP structures which demonstrate that the combined effect of the oxides deposited by magnetron sputtering does not follow the additivity rule and that this behavior is due to the formation of a quasi-liquid phase (maximum) and lead vanadate (minimum) (IR spectroscopy, Auger electron spectroscopy). The effective activation energy for the oxidation of the (V2O5 + PbO)/InP structures is shown to systematically decrease with increasing initial vanadium oxide content. The oxidation of the structures follows a partially catalytic mechanism, with V2O5 acting as a catalyst (oxidation kinetics, IR spectroscopy, ultrasoft X-ray emission spectroscopy).  相似文献   

10.
In this study, Bi12O17Cl2 nanosheets preferentially oriented growth along [200] were successfully synthesized through a facile hydrothermal method in the presence of various surfactants, including PVP, CTAB and CTAC. The crystallization behavior, band gap structure and morphology of Bi12O17Cl2 could be modulated by the addition of surfactants. Bi12O17Cl2 with surfactants displays superior visible light photocatalytic performance than pristine sample for photodegrading RhB and 2-chlorophenol. Moreover, Bi12O17Cl2 preferentially oriented growth along [200] maintained stable and recyclable in the photocatalytic process, demonstrating their promising application in environment remediation.  相似文献   

11.
A series of glass comprising of SiO2–MgO–B2O3–Y2O3–Al2O3 in different mole ratio has been synthesized. The crystallization kinetics of these glasses was investigated using various characterization techniques such as differential thermal analysis (DTA), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Crystallization behavior of these glasses was markedly influenced by the addition of Y2O3 instead of Al2O3. Addition of Y2O3 increases the transition temperature, T g, crystallization temperature, T c and stability of the glasses. Also, it suppresses the formation of cordierite phase, which is very prominent and detrimental in MgO-based glasses. The results are discussed on the basis of the structural and chemical role of Y3+ and Al3+ ions in the present glasses.  相似文献   

12.
The plasma assisted etching of SiO2 in a commercial RF reactor with a variety of C4F8/Ar/O2 chemistries has been studied by XPS, SIMS and FTIR. A simple model of surface reactions is proposed. In particular, the role of oxygen in the etch process has been investigated. According to our experiments, oxygen inhibits the formation of CFH based polymeric films on the surface. As the etching process is due to an exchange reaction between the oxygen in the SiO2 and the gaseous fluorine species in the plasma, the presence of oxygen in the etch hinders this process by occupying adsorption sites on the surface. The results would confirm that argon does not participate in chemical reactions with the SiO2 substrate but provides energy for reactions in which F, C and O are involved. The results also indicate that a thick fluorocarbon layer only forms on the surface in the absence of oxygen, regardless of the oxygen source. Consequently, only when the SiO2 layer has been substantially removed does this film form.  相似文献   

13.
Crystalline mechanochemical synthesis products in the Bi2O3–GeO2 system are studied by x-ray diffraction. The results indicate the formation of sillenite (Bi12GeO20), eulytite (Bi4Ge3O12), and Aurivillius (Bi2GeO5) phases. The Aurivillius phase is shown to be in mechanochemical equilibrium with the sillenite phase in the 2Bi2O3 + GeO2 system and with the eulytite phase in the Bi2O 3 + GeO 2 system. The structural parameters of the synthesized metastable solid solutions are determined. The three phases contain high concen-trations of vacancies. In addition, the sillenite and Aurivillius phases are characterized by compositional disordering. Structural and ESR data point to partial reduction of the oxides, which accounts for the formation of the Aurivillius phase. According to x-ray photoelectron spectroscopy results, mechanical activation of bismuth oxide produces reduced binding energy states of Bi and O, which is tentatively attributed to clustering and the formation of complex radicals.__________Translated from Neorganicheskie Materialy, Vol. 41, No. 6, 2005, pp. 711–719.Original Russian Text Copyright © 2005 by Zyryanov, Smirnov, Ivanovskaya.  相似文献   

14.
A stable precursor for CoFe2O4 thin film was prepared by sol-gel technique from the aqueous solution of FeCl3·6H2O and CoCl2·6H2O. Sol was deposited on a naturally oxidized silicon-substrate by spinning technique (2000 rpm) and heat treated at different temperatures ranging from 700 to 1100 °C. Thickness of the films was controlled in the range of 400–500 nm and all the films were characterized by using XRD and SEM. The effects of temperature and the composition on the formation of CoFe2O4 thin film were also studied. Films obtained at relatively lower temperature showed multi-phases of α-Fe2O3, CoFe2O4 and CoO while the formation of CoFe2O4 phase increases with increasing temperature. Furthermore, the composition of the solution in mol% has great role on the formation of CoFe2O4 films and the film containing 50 mol% of Co2+ exhibited CoFe2O4 mono-phase. Surface morphology of the films was studied by scanning electron microscope (SEM). Magnetic properties of the films, studied by using vibrating sample magnetometer (VSM), showed relatively high saturation magnetization (8.04–22.21 kWb/m2) as well as high coercivity (44.59–63.30 kA/m). Saturation magnetization also increases with increasing heat treatment temperature.  相似文献   

15.
We have studied the influence of YBa2Cu3O6 + x clusters formed in the plasma generated by laser ablation of a YBa2Cu3O7 ? δ target on the optical transmission spectra of amorphous YBaCuO films deposited on glass substrates arranged along the direction of predominant plasma expansion in the laser plume. It is established that intense cluster formation begins in the region of rapid decrease in the film thickness, where the temperature of plasma decreases to a level at which stable atomic complexes characteristic of the target composition can form (under the experimental conditions studied, this was observed at as distance of L > 6 cm from the target). As the amount of clusters in the deposit increases, the magnitude of the interference fringes, which are characteristic of optically homogeneous media, gradually decreases and eventually almost vanishes. At the same time, features typical of the electron structure of YBa2Cu3O7 ? δ appear and grow in the optical transmission spectra of the YBaCuO films, including the absorption due to free charge carriers at ?ω < 1.2 eV (characteristic of “metallic” clusters) and the minima at ?ω = 1.4 and 1.75 eV (characteristic of a dielectric state).  相似文献   

16.
Fe2O3–CeZrO2 is a suitable oxygen storage material for the production of pure hydrogen by a cyclic water gas shift (CWGS) process which is based on the reduction of the material by syngas followed by the re-oxidation of the reduced material with water vapor. For identification of the reduction kinetics H2-temperature programmed reduction experiments were performed. Several kinetic models were tested and the activation energy of reduction was calculated by the Kissinger method, by model-based curve fitting and by the isoconversional analysis method. The reduction of Fe2O3–CeZrO2was found to occur in a four-step process including the reduction of Fe2O3,Fe3O4, and CeZrO2. The overall process can be interpreted as phase-boundary controlled reduction of Fe2O3 to Fe3O4, and two-dimensional nucleation controlled reduction of Fe3O4 to Fe and of CeO2 to Ce2O3. At higher oxygen conversion, the reduction of Fe3O4 and CeO2 are significantly influenced by volume-diffusion in the solid bulk.  相似文献   

17.
The adsorption behavior of Ca2+ and Cl on Mg(OH)2 planes was simulated using Universal Force Field method. The energy, the capacity and the configuration involved in the adsorption process were estimated. The results showed that Ca2+ was easier to be adsorbed and incorporated on the (001) plane than other planes such as (100), (101) and (110) planes. The incorporation of Cl in Mg(OH)2 was difficult since the radius for Cl is much bigger than that of OH. The adsorption of Ca2+ on (001) plane at elevated temperature may inhibit the growth along [001] direction, leading to occurrence of the (001) plane, the shrinkage of the (101) and (110) planes and the formation of Mg(OH)2 plates with bigger ratios of diameter to thickness. Project supported by the National Natural Science Foundation of China (No. 50574051).  相似文献   

18.
We have studied the compounds K2MgV2O7 and M2CaV2O7 with M = K, Rb, and Cs. These vanadates melt incongruently in the range 635–717°C. Cooling their decomposition products to room temperature leads to the formation of nonequilibrium phase assemblages characteristic of the corresponding oxide systems. The compounds offer broadband photo- and radioluminescence with an essentially white (to the human eye) emission spectrum. A model is proposed for luminescence centers in the vanadates, which involves the formation of defects in vanadium-oxygen groups, and an energy level diagram of the emission centers is constructed in the form of configuration curves in the harmonic oscillator approximation. The luminescent properties of these compounds suggest that they can be used as basic components of cathodo- and roentgenoluminescent screens and white-light-emitting diodes with improved color performance.  相似文献   

19.
Glasses with nominal compositions 11SrO · 5.5Fe2O3 · 4.5Al2O3 · 4B2O3 (1) and 15SrO · 5.5Fe2O3 · 4.5Al2O3 · 4B2O3 (2) were prepared by rapidly quenching oxide melts between counterrotating steel rollers. The glasses were then heat-treated in the range 650–950°C to produce glass-ceramic samples. The samples were characterized by X-ray diffraction, electron microscopy, and magnetic measurements. The phase composition of the glass-ceramics was determined, and their microstructure and magnetic properties were studied. The annealing temperature was shown to have a strong effect on the coercivity of the materials, which reaches 650 and 570 kA/m for compositions 1 and 2, respectively.  相似文献   

20.
A new type of polycrystalline potassium ion conducting solid electrolyte doped with potassium nitrite as the starting material, was developed. Since cubic rare earth oxides hold reasonably enough interstitial space for bulky K+ ion migration in the crystal lattice, an extraordinary high K+ ion conductivity was successfully achieved by forming a polycrystalline (1 − x)R2O3-xKNO3 solid solution, which was realized by doping KNO2 as the KNO3 state into the interstitial site of cubic rare earth oxide crystal lattice. The potassium ion conductivity of the (1 − x)R2O3-xKNO3 (R: rare earths) solid solution linearly increased with expanding the R2O3 crystal lattice and the highest K+ ion conductivity was obtained for the 0.653Gd2O3-0.347KNO3 solid solution, which is three orders of magnitude higher than that of a well-known polycrystalline K+ ion conducting K2SO4 solid and the value exceeds that in the ab conducting plane of a K+-β ”-Al2O3 single crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号