首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 针对LCK(local correntropy-based K-means)模型收敛速度慢,提出新的基于LCK模型的两步快速分割模型。方法 两步快速分割模型包括粗分割和细分割。1)粗分割:先将待分割的原始图像下采样,减少数据量;然后使用LCK模型对采样后的粗尺度图像进行分割,得到粗分割结果及其相应的粗水平集函数。由于数据量的减少,粗分割步骤可以快速得到近似分割结果。2)细分割:在水平集函数光滑性约束下,将粗分割结果及其对应的粗水平集函数上采样到原始图像的尺度,然后将上采样后的粗水平集函数作为细分割的初始值,利用LCK模型对原始图像进行精细分割。因初始值与真实目标边界很接近,所以只需很少迭代次数就能得到最终分割结果。结果 采用F-score评价方法分析自然以及合成图像的分割结果,并与LCK模型作比较,新的模型F-score数值最大,且迭代次数不大于50。结论 粗分割步骤能在小数据量的情况下,快速分割出粗略的目标;细分割步骤在较好的初始值条件下,能够快速收敛到最终的分割结果,从而有效提高了模型的计算效率和精确性。本文算法主要适用于分割含有未知噪声及灰度非同质的医学图像,且分割效率高。  相似文献   

2.
This paper presents a novel level set method for complex image segmentation, where the local statistical analysis and global similarity measurement are both incorporated into the construction of energy functional. The intensity statistical analysis is performed on local circular regions centered in each pixel so that the local energy term is constructed in a piecewise constant way. Meanwhile, the Bhattacharyya coefficient is utilized to measure the similarity between probability distribution functions for intensities inside and outside the evolving contour. The global energy term can be formulated by minimizing the Bhattacharyya coefficient. To avoid the time-consuming re-initialization step, the penalty energy term associated with a new double-well potential is constructed to maintain the signed distance property of level set function. The experiments and comparisons with four popular models on synthetic and real images have demonstrated that our method is efficient and robust for segmenting noisy images, images with intensity inhomogeneity, texture images and multiphase images.  相似文献   

3.
A stochastic structure for single and multi-agent level set method is investigated in this article in an attempt to overcome local optima problems in image segmentation. Like other global optimization methods that take advantage of random operators and multi-individual search algorithms, the best agent in this proposed algorithm plays the role of leader in order to enable the algorithm to find the global solution. To accomplish this, the procedure employs a set of stochastic partial differential equations (SPDE), each one of which evolves based on its own stochastic dynamics. The agents are then compelled to simultaneously converge to the best available topology. Moreover, the stochastic dynamics of each agent extends the stochastic level set approach by using a multi source structure. Each source is a delta function centered on a point of evolving front. Lastly, while the computational costs of these methods are higher than the region-based level set method, the probability of finding the global solution is significantly increased.  相似文献   

4.
Despite much effort and significant progress in recent years, image segmentation remains a challenging problem in image processing, especially for the low contrast, noisy synthetic aperture radar (SAR) images. This paper explores the segmentation of oil slicks using a partial differential equation (PDE)‐based level set method, which represents the slick surface as an implicit propagation interface. Starting from an initial estimation with priori information, the level set method creates a set of speed functions to detect the position of the propagation interface. Specifically, the image intensity gradient and the curvature flow are utilized together to determine the speed and direction of the propagation. This allows the front interface to propagate naturally with topological changes, significant protrusions and narrow regions, giving rise to stable and smooth boundaries that discriminate oil slicks from the surrounding water. As the speckles are removed concurrently while the front interface propagates, the pre‐filtering of noise is saved. The proposed method has been illustrated by experiments on oil slick segmentation using the ERS‐2 SAR images. Its advantages over the traditional image segmentation approaches have also been demonstrated.  相似文献   

5.
K均值聚类分割的多特征图像检索方法   总被引:1,自引:0,他引:1       下载免费PDF全文
从图像数据库中快速、准确地检索出所需要的图像,具有广泛的应用前景。针对使用单一图像特征难以准确表达图像之间的差异问题,提出了一种利用颜色聚类分割和形状特征提取的图像检索算法。选择符合人眼视觉特征的HSV空间,分别重组最能描述图像颜色特征的H分量和形状特征的V分量;用K均值聚类算法对两个分量进行聚类分割,得到目标物体;提取目标物体的Hu不变矩和傅里叶描述子来描述形状特征;用欧式距离进行相似度测量并用于图像检索中。采用不同类型图像进行实验,结果表明该算法优于使用单一特征和一般分割方法的图像检索技术。  相似文献   

6.
A new level set method for inhomogeneous image segmentation   总被引:2,自引:0,他引:2  
Intensity inhomogeneity often appears in medical images, such as X-ray tomography and magnetic resonance (MR) images, due to technical limitations or artifacts introduced by the object being imaged. It is difficult to segment such images by traditional level set based segmentation models. In this paper, we propose a new level set method integrating local and global intensity information adaptively to segment inhomogeneous images. The local image information is associated with the intensity difference between the average of local intensity distribution and the original image, which can significantly increase the contrast between foreground and background. Thus, the images with intensity inhomogeneity can be efficiently segmented. What is more, to avoid the re-initialization of the level set function and shorten the computational time, a simple and fast level set evolution formulation is used in the numerical implementation. Experimental results on synthetic images as well as real medical images are shown in the paper to demonstrate the efficiency and robustness of the proposed method.  相似文献   

7.
基于K-均值聚类算法的图像区域分割方法   总被引:7,自引:0,他引:7  
提出了一种自动确定聚类数目的K-均值聚类算法,并基于这种算法介绍了一种彩色图像区域分割方法。这种方法首先选择合适的彩色空间,抽取图像的像素点颜色、纹理及位置等特征,形成特征向量空间;然后,在此特征空间中,运用提出的方法进行聚类和图像区域分割;最后,抽取图像区域的特征。对提出的方法进行了详细的介绍,给出实验结果分析,并与相类似的方法进行了比较实验。实验结果表明,提出的图像区域分割方法具有分割速度快、效果好等特点,适合于基于图像区域检索系统,具有较强的实用价值。  相似文献   

8.
目的 传统的极化SAR图像分割方法中,由于采用的统计分布模型不能较好地描述高分辨率的图像纹理特征,导致高分辨率极化SAR图像分割效果较差。针对这个问题,本文将具有广泛适用性的KummerU分布嵌入到水平集极化SAR图像分割方法中,提出了一种新的极化SAR图像分割算法。方法 将KummerU分布作为高分辨率极化SAR图像的统计模型,定义一种适用于极化SAR图像分割的能量泛函;利用最大似然法对各个区域的KummerU分布进行参数估计,并通过数值偏微分方程的方法求解水平集函数,实现极化SAR图像的区域分割。结果 分别对仿真全极化数据,真实全极化数据进行分割实验,结果表明本文提出的方法其分割精度高于传统方法,分割精度高于95%,从而验证了新方法的有效性。结论 本文算法能够对各向同质区和各向异质区的极化SAR图像都能取得良好的分割效果,并适应于多种场景,有效地分割出背景和目标。  相似文献   

9.
小麦冠层图像H分量的K均值聚类分割   总被引:2,自引:0,他引:2  
大田环境下小麦冠层图像具有光照不均匀、背景复杂及阴影遮挡等特点,经典图像分割算法存在精度低、过分割等问题,提出一种基于HSI空间下H分量的K均值聚类算法。使用[R+G-B]归一化处理RGB空间下的彩色图像,以抑制其B分量;将归一化图像进行RGB到HSI的颜色空间转化;根据光照是否均匀,使用K均值聚类算法对彩色图像的H分量进行不同的聚类处理,经形态学开运算及去噪处理获得最终目标图像。实验表明,该方法对不同施氮量、不同光照、不同生长时期小麦冠层图像的分割效果较好,相对基于Lab空间的K-means聚类分割,该方法可一定程度避免过分割现象;相对基于H分量的Otsu算法,对光照不均匀图像分割更完整,对复杂背景图像分割更精确。  相似文献   

10.
The K-means Iterative Fisher (KIF) algorithm is a robust, unsupervised clustering algorithm applied here to the problem of image texture segmentation. The KIF algorithm involves two steps. First, K-means is applied. Second, the K-means class assignments are used to estimate parameters required for a Fisher linear discriminant (FLD). The FLD is applied iteratively to improve the solution. This combined K-means and iterative FLD is referred to as the KIF algorithm. Two KIF implementations are presented: a mixture resolving approach is extended to an unsupervised binary hierarchical approach. The same binary hierarchical KIF algorithm is used to properly segment images even though the number of classes, the class spatial boundaries, and the number of samples per class vary. The binary hierarchical KIF algorithm is fully unsupervised, requires no a priori knowledge of the number of classes, is a non-parametric solution, and is computationally efficient compared to other methods used for clustering in image texture segmentation solutions. This unsupervised methodology is demonstrated to be an improvement over other published texture segmentation results using a wide variety of test imagery. Gabor filters and co-occurrence probabilities are used as texture features.  相似文献   

11.
In this paper, a new local Chan-Vese (LCV) model is proposed for image segmentation, which is built based on the techniques of curve evolution, local statistical function and level set method. The energy functional for the proposed model consists of three terms, i.e., global term, local term and regularization term. By incorporating the local image information into the proposed model, the images with intensity inhomogeneity can be efficiently segmented. In addition, the time-consuming re-initialization step widely adopted in traditional level set methods can be avoided by introducing a new penalizing energy. To avoid the long iteration process for level set evolution, an efficient termination criterion is presented which is based on the length change of evolving curve. Particularly, we proposed constructing an extended structure tensor (EST) by adding the intensity information into the classical structure tensor for texture image segmentation. It can be found that by combining the EST with our LCV model, the texture image can be efficiently segmented no matter whether it presents intensity inhomogeneity or not. Finally, experiments on some synthetic and real images have demonstrated the efficiency and robustness of our model. Moreover, comparisons with the well-known Chan-Vese (CV) model and recent popular local binary fitting (LBF) model also show that our LCV model can segment images with few iteration times and be less sensitive to the location of initial contour and the selection of governing parameters.  相似文献   

12.
基于K均值聚类与区域合并的彩色图像分割算法   总被引:4,自引:0,他引:4  
提出一种基于K均值聚类与区域合并的彩色图像分割算法。首先,对图像运用mean shift算法进行滤波,在对图像进行平滑的同时保持图像的边缘;然后,运用K均值算法对图像在颜色空间进行聚类,得到初始分割的结果;最后,给出了一种区域合并策略,对初始分割获得的区域进行合并,得到最终的分割结果。仿真结果表明,算法的分割结果和人的主观视觉感知具有良好的一致性。  相似文献   

13.
A novel region-based active contour model (ACM) is proposed in this paper. It is implemented with a special processing named Selective Binary and Gaussian Filtering RegularizedLevel Set(SBGFRLS) method, which first selectively penalizes the level set function to be binary, and then uses a Gaussian smoothing kernel to regularize it. The advantages of our method are as follows. First, a new region-based signed pressure force (SPF) function is proposed, which can efficiently stop the contours at weak or blurred edges. Second, the exterior and interior boundaries can be automatically detected with the initial contour being anywhere in the image. Third, the proposed ACM with SBGFRLS has the property of selective local or global segmentation. It can segment not only the desired object but also the other objects. Fourth, the level set function can be easily initialized with a binary function, which is more efficient to construct than the widely used signed distance function (SDF). The computational cost for traditional re-initialization can also be reduced. Finally, the proposed algorithm can be efficiently implemented by the simple finite difference scheme. Experiments on synthetic and real images demonstrate the advantages of the proposed method over geodesic active contours (GAC) and Chan–Vese (C–V) active contours in terms of both efficiency and accuracy.  相似文献   

14.
针对现有无须重新初始化的变分水平集分割模型, 存在对边缘模糊、对比度差等图像不是很敏感、分割效果不理想的问题, 提出了一种基于核模糊聚类的变分水平集医学图像分割方法。将原始图像进行核模糊C-均值聚类, 把得到的聚类结果带入初始化水平集函数得到初始轮廓, 最后利用李模型的分割方法实现最终的图像分割。实验结果表明, 该方法具有良好的分割质量, 适应性强, 同时可减少迭代次数。  相似文献   

15.
对Chan-Vese提出的基于简化Mumford-Shah区域最优划分模型和测地线主动轮廓模型在水平集框架下的物理机理进行了分析,在充分考虑其模型优点的基础上,通过构造新的能够整合局部边缘信息和全局区域信息的演化函数对上述模型所存在问题进行了针对性处理,得到了一种新的水平集图像分割模型。人工合成图像和红外光学图像的仿真结果表明,在同样的模型参数条件下,该文模型具有比传统CV模型和GAC模型更高的演化效率和分割质量。  相似文献   

16.
This paper introduces an approach for the extraction and combination of different cues in a level set based image segmentation framework. Apart from the image grey value or colour, we suggest to add its spatial and temporal variations, which may provide important further characteristics. It often turns out that the combination of colour, texture, and motion permits to distinguish object regions that cannot be separated by one cue alone. We propose a two-step approach. In the first stage, the input features are extracted and enhanced by applying coupled nonlinear diffusion. This ensures coherence between the channels and deals with outliers. We use a nonlinear diffusion technique, closely related to total variation flow, but being strictly edge enhancing. The resulting features are then employed for a vector-valued front propagation based on level sets and statistical region models that approximate the distributions of each feature. The application of this approach to two-phase segmentation is followed by an extension to the tracking of multiple objects in image sequences.  相似文献   

17.
针对手指静脉图像中存在的弱边缘、灰度不均匀以及低对比度等现象,提出一种结合偶对称Gabor滤波与水平集思想的分割算法,并应用于手指静脉图像的分割。首先,使用偶对称Gabor滤波算法,对手指静脉图像从8个不同的方向分别进行滤波运算;然后,根据8个方向上的滤波结果进行图像重建,得到目标与背景灰度对比度显著提高的图像;最后,应用结合局部与全局信息的水平集方法对手指静脉图像进行分割。将所提算法与Li等水平集算法(LI C, HUANG R, DING Z, et al. A variational level set approach to segmentation and bias correction of images with intensity inhomogeneity. MICCAI'08: Proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention, Part II. Berlin: Springer, 2008: 1083-1091)、Legendre水平集(L2S)算法相比,所提算法在分割精度评价标准面积差异(AD)百分比上分别降低了1.116%、0.370%,相对差异度(RDD)分别降低了1.661%、1.379%。实验结果表明,与传统只考虑局部信息或全局信息的水平集图像分割算法相比,所提算法能取得更高的分割精度。  相似文献   

18.
针对脑部磁共振图像(M RI)的灰度分布特性,提出一种结合灰度距离加权K‐means聚类与模糊置信度的混合医学图像分割方法。采用改进的灰度加权K‐means聚类方法对M RI图像进行训练分类得到粗略分类结果,运用基于支持向量数据域描述(SVDD)的模糊置信度方法对每个类精细分割,得到脑部各组织的输出图像。该算法分割时逐渐增大目标模糊置信度门限,通过对模糊置信度的动态优化来逼近最佳分割结果。在脑部M RI图像上的实验结果表明,该方法在处理图像灰度分布不均匀、存在孤立点、细化轮廓等问题时具有较高的准确度和鲁棒性。  相似文献   

19.
In this paper, a novel active contour model (R-DRLSE model) based on level set method is proposed for image segmentation. The R-DRLSE model is a variational level set approach that utilizes the region information to find image contours by minimizing the presented energy functional. To avoid the time-consuming re-initialization step, the distance regularization term is used to penalize the deviation of the level set function from a signed distance function. The numerical implementation scheme of the model can significantly reduce the iteration number and computation time. The results of experiments performed on some synthetic and real images show that the R-DRLSE model is effective and efficient. In particular, our method has been applied to MR kidney image segmentation with desirable results.  相似文献   

20.
Intensity inhomogeneity causes considerable difficulty in the quantitative analysis of magnetic resonance (MR) images. Thus bias field estimation is a necessary pre-processing step before quantitative analysis of MR data. This paper presents a variational level set approach for bias correction and segmentation for images with intensity inhomogeneities. Our method is based on the observation that local intensity variations in relatively smaller regions are separable, despite the inseparability of the whole image. In the beginning we define a function for clustering the image pixels in a smaller neighborhood. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. Generally the local intensity variations are described by the Gaussian distributions with different means and variances. In this work the objective functions are integrated over the entire domain with local Gaussian distribution of fitting energy, ultimately analyzing the data with a level set framework. Our method is able to capture bias of quite general profiles. Moreover, our model can also distinguish regions with similar intensity distribution with different variances. The proposed method has been rigorously validated with images acquired on variety of imaging modalities with promising results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号