首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A poly(l-lactic acid)-block-polystyrene-block-poly(methyl methacrylate) (PLLA-b-PS-b-PMMA) triblock copolymer was synthesized with a crystalline PLLA end block. Single crystals of this triblock copolymer grown in dilute solution could generate uniformly tethered diblock copolymer brushes, PS-b-PMMA, on the PLLA single crystal substrate. The diblock copolymer brushes exhibited responsive, characteristic surface structures after solvent treatment depending upon the quality of the solvent in relation to each block. The chemical compositions of these surface structures were detected via the surface enhanced Raman scattering technique. Using atomic force microscopy, the physical morphologies of these surface structures were identified as micelles in cyclohexane and “onion”-like morphologies in 2-methoxyethanol, especially when the PS-b-PMMA tethered chains were at low tethering density.  相似文献   

2.
《Polymer》2014,55(26):6967-6972
Pressure dependence of various phase transitions for the miscible block copolymer (BCP) blends was evaluated by depolarized light scattering (DPLS) and small-angle neutron scattering (SANS) measurements, in which the blends consist of a polystyrene-b-poly(n-butyl methacrylate) (PS-b-PnBMA) and a deuterated polystyrene-b-poly(n-hexyl methacrylate) (dPS-b-PnHMA). Excellent baroplasticity was observed in nearly symmetric blends of PS-b-PnBMA/dPS-b-PnHMA, leading to the most outstanding pressure coefficients, |dT/dP|, in a closed-loop type phase behavior between a lower disorder-to-order transition (LDOT) and an order-to-disorder transition (ODT) type phase behavior. Together with the estimated pressure coefficients based on the values of enthalpic and volumetric changes at phase transitions, we demonstrate that the entropic compressibility for the miscible BCP blends is a baroplastic indicator, which was characterized by the negative volume change on mixing (ΔVmix) at transitions.  相似文献   

3.
Bokyung Kim  Jong Hak Kim  Jehan Kim 《Polymer》2009,50(15):3822-291
We report the transition behavior and the ionic conductivity of ion-doped amorphous block copolymer, based on two compositionally different polystyrene-block-poly(2-vinylpyridine) copolymers (PS-b-P2VPs) that can self-assemble into nanostructures, where P2VP block is ionophilic to lithium perchlorate (LiClO4). The transition temperatures of LiClO4-doped PS-b-P2VP, like the order-to-disorder transition (TODT), were measured by small-angle X-ray scattering (SAXS) and depolarized light scattering (DPLS). The selective ionic coordination to the nitrogen units of P2VP block leads to the increase of the repulsive interactions between two block components from weak- to strong-segregation regime with increasing amount of LiClO4, which results subsequently in the increased TODT. However, for a compositionally asymmetric PS-b-P2VP under lamellar morphology, the ionic conductivity by the addition of LiClO4 was remarkably increased at higher temperatures, representing that the effective ionic coordination at the greater volume fraction of P2VP block component improves the ionic conductivity as the temperature approaches to a rubbery phase.  相似文献   

4.
The morphology change of an asymmetric polystyrene-block-poly(2-vinyl pyridine) (PS-b-PVP) diblock copolymer micellar film was investigated during solvent vapor annealing in chloroform. Initially, smaller islands in nanometer-length scale form at the film surface. Further annealing results in the growth of the islands composed of the PS-b-PVP cylinders above the bottom brush layer. For comparison, a film of the block copolymer prepared from THF solution (without micellar structure) was also studied. The surface morphology of the film from THF evolves via spinodal dewetting mechanism during solvent vapor annealing. At a long time solvent vapor annealing, the two kinds of the films display the same surface morphologies, which are determined by the interplay between the surface field and autodewetting.  相似文献   

5.
The re-assembly behaviors of spherical micelles of the polystyrene-b-poly(acrylic acid) (PS-b-PAA) diblock copolymer in different solvent mixtures were investigated using dynamic light scattering, transmission electron microscopy and atomic force microscopy. Depending on the nature of the solvent, PS-b-PAA micelles re-assembled from spheres to nanorings in toluene or to necklace-like aggregates in water induced by solvent evaporation. Systematic studies suggested that the re-assembly behaviors on a neutral surface are strongly correlated with the micellar surface components, the solvent polarity and the chain length of the micelle corona of the solvated blocks. We proposed that the formation of nanorings from PS-b-PAA micelles in toluene is mainly induced by the dewetting process of the solvent, while the necklace-like structure arises from the hydrogen bonding interactions among the partially dissociated PAA units.  相似文献   

6.
Limei Xu  Hui Yang  Chunsheng Li 《Polymer》2010,51(16):3808-4000
A novel route for a preparation of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) block copolymer vesicles induced by supercritical carbon dioxide (scCO2) is demonstrated. When PS-b-PEO block copolymer solutions in tetrahydrofuran (THF) are treated with scCO2 at 70 °C for different times, PS-b-PEO copolymers first assemble into aggregated spheres; then aggregated spheres change into large compound micelles and finally evolve into vesicles. The possible formation mechanism of the vesicles is discussed.  相似文献   

7.
Polystyrene-b-poly(methyl acrylate) (PS-b-PMA) block copolymer with PS volume fraction of 25.2 vol% was synthesized by atom transfer radical polymerization. Non-pretreated silicon wafers were used as the substrates to prepare perpendicular oriented PS cylinders in PMA matrix via solvent annealing which could induce the transformation of spheres to vertically oriented and hexagonally packed cylinders. The spherical microdomains were formed after the evaporation of solvents from the solutions of the block copolymer in selective solvents mixed from methanol, acetone and dichloromethane. The thickness of films could be as thick as 1000 nm, which were much thicker than usual cases and the cylinders came from the directional coalescence of the spheres, thus any pre-treatments of the substrates were not required for perpendicular orientation. The structures were characterized by small angle X-ray scattering (SAXS), transmission electron microscope (TEM), atom force microscopy (AFM) and grazing incidence small angle X-ray scattering (GISAXS).  相似文献   

8.
Juan Peng 《Polymer》2005,46(15):5767-5772
The dewetting pattern development of thin film of poly(styrene)-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer has been studied after ‘annealing’ in the PMMA block selective solvent vapor. Initially, typical circular dewetted holes are observed. Further annealing, however, results in the formation of fractal-like holes. The heterogeneous stress induced by the residual solvent remaining in the film after spin-coating induces the anisotropy of the polymer mobility during the annealing process, which triggers the formation of the intriguing surface patterns.  相似文献   

9.
Joachim Schmelz  Holger Schmalz 《Polymer》2012,53(20):4333-4337
We present a straightforward approach to well-defined 1D patchy particles utilizing crystallization-induced self-assembly. A polystyrene-block-polyethylene-block-poly(methyl methacrylate) (PS-b-PE-b-PMMA) triblock terpolymer is cocrystallized in a random fashion with a corresponding polystyrene-block-polyethylene-block-polystyrene (PS-b-PE-b-PS) triblock copolymer to yield worm-like crystalline-core micelles (wCCMs). Here, the corona composition (PMMA/PS fraction) can be easily adjusted via the amount of PS-b-PE-b-PMMA triblock terpolymer in the mixture and opens an easy access to wCCMs with tailor-made corona structures. Depending on the PMMA fraction, wCCMs with a mixed corona, spherical PMMA patches embedded in a continuous PS corona, as well as alternating PS and PMMA patches of almost equal size can be realized. Micelles prepared by cocrystallization show the same corona structure as those prepared from neat triblock terpolymers at identical corona composition. Thus, within a certain regime of desired corona compositions the laborious synthesis of new triblock terpolymers for every composition can be circumvented.  相似文献   

10.
Isoporous asymmetric polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) hollow fiber membranes were successfully made by a dry-jet wet spinning process. Well-defined nanometer-scale pores around 20–40 nm in diameter were tailored on the top surface of the fiber above a non-ordered macroporous layer by combining block copolymer self-assembly and non-solvent induced phase separation (SNIPS). Uniformity of the surface-assembled pores and fiber cross-section morphology was improved by adjusting the solution concentration, solvent composition as well as some important spinning parameters such as bore fluid flow rate, polymer solution flow rate and air gap distance between the spinneret and the precipitation bath. The formation of the well-organized self-assembled pores is a result of the interplay of fast relaxation of the shear-induced oriented block copolymer chains, the rapid evaporation of the solvent mixture on the outer surface and solvent extraction into the bore liquid on the lumen side, and gravity force during spinning. Structural features of the block copolymer solutions were investigated by small-angle X-ray scattering (SAXS) and rheological properties of the solutions were examined as well. The scattering patterns of the optimal solutions for membrane formation indicate a disordered phase which is very close to the disorder-order transition. The nanostructured surface and cross-section morphology of the membranes were characterized by scanning electron microscopy (SEM). The water flux of the membranes was measured and gas permeation was examined to test the pressure stability of the hollow fibers.  相似文献   

11.
Jong Kwan Lee  Hae Jin Lim  Seong Mo Jo 《Polymer》2006,47(15):5420-5428
This study examined the microdomain structures and the crystallization behavior in binary blends consisting of an asymmetric block copolymer and a homopolymer using small-angle X-ray scattering, optical microscopy and differential scanning calorimetry. A polystyrene-block-poly(methyl methacrylate) copolymer (PS-b-PMMA) was mixed with a low molecular weight poly(vinylidene fluoride) (PVDF), where the PS-b-PMMA had a 0.30 wt fraction of the PMMA block. At a PVDF concentration of <13.0 wt%, the PVDF was completely miscible with the PMMA microdomains, and the blends had a cylindrical structure. The addition of PVDF altered the morphology from a PMMA-cylindrical structure to a lamellar structure and finally to a PS-cylindrical structure. When the PVDF concentration was <23.0 wt%, the PVDF was distributed uniformly within the PMMA microdomains. After adding more PVDF, some of the PVDF was locally dissolved in the middle of the PMMA microdomains. The addition of PVDF also affected the ordered microstructure in the blends, leading to a well-defined microdomain structure. However, PVDF crystallization significantly disturbed the pre-existing microdomain structure, resulting in a poorly ordered morphology. In the blends, PVDF had unique crystallization behavior as a result of the space constraints imposed by the microdomains.  相似文献   

12.
Molecular weight distribution effect on the morphological behavior of polystyrene-block-polyisoprene (PS-b-PI) diblock copolymers was investigated. PS-b-PI samples were prepared by anionic polymerization and further fractionated by HPLC to obtain the fractions of similar average molecular weight and composition but of narrower distributions in both molecular weight and composition. The strategy is to use reversed-phase LC to fractionate the PI block and normal phase LC to fractionate the PS block with a minimal effect on the other blocks. The interfacial thickness, grain size and the phase transition behavior of the unfractionated and fractionated PS-b-PI were compared by X-ray reflectivity, small angle X-ray scattering, transmission electron microscopy and rheological measurements. The fractionated PS-b-PI with more homogeneous molecular weight and composition exhibits a narrower interface, larger grain size and a sharper morphological transition compared to the unfractionated PS-b-PI.  相似文献   

13.
Yang Cong  Jun Fu 《Polymer》2005,46(14):5377-5384
Morphology evolution of diblock copolymer polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) micellar thin film in the presence of water was investigated. Surface holes with nanoscale cavities in hexagonal order could be induced by water treatment for certain periods. The nanoscale surface cavities could be transformed into isolated nanospheres in a dry environment or back to protruding densely packed spheres by toluene (a selective solvent for PS coronae) treatment. The morphology evolution of micellar thin film strongly depended on the slow evaporation of toluene solvent, the swelling of P4VP cores in the humid environment, and the subsequent movement of PS chains induced by air and toluene. The incompatibility between solvent and block, and that between the unlike blocks also played an important role in the morphology evolution.  相似文献   

14.
Chaoxu Li 《Polymer》2007,48(14):4235-4241
We studied the effect of solvent selectivity on the closed-loop phase behavior of a polystyrene-block-poly(n-pentyl methacrylate) copolymer. It was found that the lower disorder-to-order transition temperature (LDOT) and upper order-to-disorder transition temperature (UODT) consisting of the closed-loop were very sensitive to the selectivity of the solvent. With the addition of very small amounts of non-selective solvents such as di-n-octyl phthalate and dimethyl phthalate, the LDOT increased rapidly, whereas the UODT decreased dramatically; thus, the immiscibility loop was shrunk greatly. On the other hand, both the LDOT and UODT decreased with increasing amount of dodecanol, a highly selective solvent to poly(n-pentyl methacrylate) block. However, the decrease in the LDOT was greater than that of the UODT, leading to an increased immiscibility loop.  相似文献   

15.
Chao Wang  Tingmei Wang  Xianqiang Pei 《Polymer》2009,50(22):5268-2608
The solution behavior of poly(styrene)-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer with added poly(4,4′-oxydiphenylenepyromellitamic acid) (POAA) homopolymer in DMF is studied by dynamic light scattering (DLS), nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM). It is found that coaggregation takes place when mixing PS-b-P4VP block copolymer and POAA homopolymer in DMF due to the strong interpolymer hydrogen-bonding between POAA chains and P4VP blocks. The coaggregation is a diffusion-controlled process and the complexation-induced aggregates are very stable. NMR measurements demonstrate that the resultant aggregates are much more swollen compared with typical amphiphilic block copolymer core-shell micelles. DLS measurements with Eu3+ as a probe combined with TEM observation, are employed to study the structure of the aggregates. Results reveal that the formed aggregates are core-shell spheres with the P4VP/POAA complexes as core and the PS blocks as shell when the weight ratio of POAA to PS-b-P4VP is lower. However, a core-shell-corona structure forms with a thin layer of POAA chains adsorbed on the initial core-shell aggregates with increasing weight content of POAA to 60%. Finally, possible mechanisms of the structural transitions are proposed.  相似文献   

16.
Xue Li  Hui Yang  Limei Xu  Dong Ha Kim 《Polymer》2008,49(5):1376-1384
The effects of additives of poly(methyl methacrylate) (PMMA) and HAuCl4 on the morphologies of hybrid titania films formed via co-assembly of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) copolymers, titania sol-gel precursor in a selective solvent were investigated. The results show that addition of PMMA or HAuCl4 has an important influence on the morphologies of hybrid titania films. Addition of PMMA or HAuCl4 can induce the morphology transition of the PS-b-PEO/titania sol-gel mixture from spherical micelles to vesicles. Therefore, the morphologies of the hybrid films formed on silicon substrate surfaces by spin-coating can be controlled by the addition of homopolymer (PMMA) or inorganic precursor (HAuCl4) into the PS-b-PEO/titania sol-gel mixtures, allowing access to nanoparticles or nanoporous films. After removing the polymer matrix, nanoparticle aggregates or nanobowl-like structures are left behind on the substrate surfaces.  相似文献   

17.
This paper describes the formation of fibril like aggregates from the self-assembly of block copolymer mixture (polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) and polystyrene-b-poly(acrylic acid) (PS-b-PAA)) via interpolymer hydrogen bonding in nonselective solvent. The hydrogen bonding between P4VP and PAA in chloroform leads to the formation of complex. When all the pyridine units in P4VP were all hydrogen bonded to acrylic acid in PAA, the formed complex is insoluble, resulting in the formation of spherical micellar aggregates and nanorods. However, two kinds of supramolecules with insoluble or soluble complex are formed in the solution when PS-b-P4VP and PS-b-PAA are mixed with equal mole ratio. The fibril like aggregates can be formed from the self-assembly of supramolecule with soluble complex during spin-coating process. The effects of evaporation rate of solvent and solution concentrations on the formation of fibril like aggregates were investigated. The results prove that the kinetic factors play an important role in the formation of the fibril like aggregates.  相似文献   

18.
We demonstrate a simple methodology to incorporate interacting magnetic nanoparticles (mNPs) into cylinder forming block copolymer templates. Poly(styrene-block-isoprene) (PS-b-PI) with PI cylinders and poly(styrene-block-4vinylpyridine) (PS-b-P4VP) with PS cylinders were used as the block copolymer templates and γ-Fe2O3 NPs coated with oleic acids were pre-synthesized for the interacting mNPs. Regardless of the template block copolymers, the selective location of mNPs and the size of mNP aggregates are clearly altered by changing casting solvents. When good solvents for both blocks were used as casting solvents, mNPs are readily aggregated during the solvent evaporation. In contrast, under selective casting solvents for the minor blocks, the mNPs were selectively trapped into the cylinder domains through the facile inversion of micelles during solvent evaporation. The interplay between mNPs and block copolymers was also tested with different molecular weights of block copolymers.  相似文献   

19.
Yongli Mi  Yannie Chan  Pingbo Huang 《Polymer》2006,47(14):5124-5130
We introduce an innovative fabrication of the polymer scaffolds for tissue culture by utilizing the evaporation induced self-assembled micropatterns of polystyrene-block-poly(acrylic acid) (PS-b-PAA) diblock copolymer micelles. The microstructures were used as templates for micromolding a silicon elastomer, poly(dimethylsiloxane) (PDMS), into tissue scaffolds and microwells for cell patterning purpose. Cultivation of human epithelial cells (Calu-3 cell line) on the PDMS scaffolds demonstrates potential applications in tissue engineering and cell-based biosensors. The reported method is rapid, simple, economical, and versatile comparing with the existing microfabrication techniques.  相似文献   

20.
Eunhye Kim  Hoyeon Lee  Du Yeol Ryu 《Polymer》2011,52(12):2677-2684
Ordering and microdomain orientation for the films of symmetric polystyrene-b-poly(tert-butyl methacrylate)s (PS-b-PtBMAs) was investigated by in-situ grazing incidence small-angle X-ray scattering (GISAXS) and the electron microscopy. During thermal deprotection at higher temperature (200 °C), functional tert-butyl ester units in the PtBMA block component are integrated into inter- or intra-molecular anhydride linkages. It was observed that this process causes an increase in the Flory-Huggins interaction parameter (χ) between the two block components for disordered PS-b-PtBMA film, leading to a modulated nonequilibrium structure. Interestingly, for lamella-forming PS-b-PtBMA film, a significant chain stretching in lateral direction during thermal deprotection resulted in a characteristic strain-induced perpendicular orientation in the middle of the film confined between two parallel orientations of lamellar microdomains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号