首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Santosh D. Wanjale 《Polymer》2006,47(18):6414-6421
Poly(1-butene)/MWCNT nanocomposites were prepared by simple melt processing technique. Crystallization, crystal-to-crystal phase transformation and spherulitic morphology were studied using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and optical microscopy (OM). The non-isothermal crystallization exhibited higher values of Zt derived from Avrami theory and lower values of F(T) obtained from Avrami-Ozawa analysis, while the isothermal crystallization revealed a significant increase in crystallization temperatures and lower crystallization half times compared to pristine PB. The observed changes in the crystallization kinetics were ascribed to the enhanced nucleation of PB in the presence of MWCNT. The nucleating activity calculated from the non-isothermal crystallization data revealed that the MWCNTs provide an active surface for the nucleation of PB. The optical micrographs exhibited significantly smaller crystallites with disordered morphology for the nanocomposites compared to the well defined spherulitic morphology for pristine PB. The rate of phase transformation from kinetically favored tetragonal to thermodynamically stable hexagonal form was noticeably enhanced as evidenced by the reduction in the half time for phase transformation from 58 h to 25 h for PB reinforced with 7% MWCNT.  相似文献   

2.
Poly(ethylene terephthalate) (PET) nanocomposites reinforced with multiwall carbon nanotubes (MWCNTs) were prepared through melt compounding in a twin‐screw extruder. The presence of MWCNTs, which acted as good nucleating agents, enhanced the crystallization of PET through heterogeneous nucleation. The incorporation of a small quantity of MWCNTs improved the thermal stability of the PET/MWCNT nanocomposites. The mechanical properties of the PET/MWCNT nanocomposites increased with even a small quantity of MWCNTs. There was a significant dependence of the rheological properties of the PET/MWCNT nanocomposites on the MWCNT content. The MWCNT loading increased the shear‐thinning nature of the polymer‐nanocomposite melt. The storage modulus and loss modulus of the PET/MWCNT nanocomposites increased with increasing frequency, and this increment effect was more pronounced at lower frequencies. At higher MWCNT contents, the dominant nanotube–nanotube interactions led to the formation of interconnected or networklike structures of MWCNTs in the PET/MWCNT nanocomposites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1450–1457, 2007  相似文献   

3.
Jun Young Kim 《Polymer》2006,47(4):1379-1389
Multi-walled carbon nanotube (MWCNT) and poly(ethylene 2,6-naphthalate) (PEN) nanocomposites are prepared by a melt blending process. There are significant dependence of non-isothermal crystallization behavior and kinetics of PEN/MWCNT nanocomposites on the MWCNT content and cooling rate. The incorporation of MWCNT accelerates the mechanism of nucleation and crystal growth of PEN, and this effect is more pronounced at lower MWCNT content. Combined Avrami and Ozawa analysis is found to be effective in describing the non-isothermal crystallization of the PEN/MWCNT nanocomposites. The MWCNT in the PEN/MWCNT nanocomposites exhibits much higher nucleation activity than any nano-scaled reinforcement. When a vary small quantity of MWCNT was added, the activation energy for crystallization is lower, then gradually increased, and becomes higher than that of pure PEN above 1.0 wt% MWCNT content. The incorporation of MWCNT improves the storage modulus and loss modulus of PEN/MWCNT nanocomposites.  相似文献   

4.
S. Al-Malaika  W. Kong 《Polymer》2005,46(1):209-228
Ethylene-propylene rubber (EPR) functionalised with glycidyl methacrylate (GMA) (f-EPR) during melt processing in the presence of a co-monomer, such as trimethylolpropane triacrylate (Tris), was used to promote compatibilisation in blends of polyethylene terephthalate (PET) and f-EPR, and their characteristics were compared with those of PET/f-EPR reactive blends in which the f-EPR was functionalised with GMA via a conventional free radical melt reaction (in the absence of a co-monomer). Binary blends of PETand f-EPR (with two types of f-EPR prepared either in presence or absence of the co-monomer) with various compositions (80/20, 60/40 and 50/50 w/w%) were prepared in an internal mixer. The blends were evaluated by their rheology (from changes in torque during melt processing and blending reflecting melt viscosity, and their melt flow rate), morphology scanning electron microscopy (SEM), dynamic mechanical properties (DMA), Fourier transform infrared (FTIR) analysis, and solubility (Molau) test.The reactive blends (PET/f-EPR) showed a marked increase in their melt viscosities in comparison with the corresponding physical (PET/EPR) blends (higher torque during melt blending), the extent of which depended on the amount of homopolymerised GMA (poly-GMA) present and the level of GMA grafting in the f-EPR. This increase was accounted for by, most probably, the occurrence of a reaction between the epoxy groups of GMA and the hydroxyl/carboxyl end groups of PET. Morphological examination by SEM showed a large improvement of phase dispersion, indicating reduced interfacial tension and compatibilisation, in both reactive blends, but with the Tris-GMA-based blends showing an even finer morphology (these blends are characterised by absence of poly-GMA and presence of higher level of grafted GMA in its f-EPR component by comparison to the conventional GMA-based blends). Examination of the DMA for the reactive blends at different compositions showed that in both cases there was a smaller separation between the glass transition temperatures compared to their position in the corresponding physical blends, which pointed to some interaction or chemical reaction between f-EPR and PET. The DMA results also showed that the shifts in the Tgs of the Tris-GMA-based blends were slightly higher than for the conventional GMA-blends. However, the overall tendency of the Tgs to approach each other in each case was found not to be significantly different (e.g. in a 60/40 ratio the former blend shifted by up to 4.5 °C in each direction whereas in the latter blend the shifts were about 3 °C). These results would suggest that in these blends the SEM and DMA analyses are probing uncorrelatable morphological details. The evidence for the formation of in situ graft copolymer between the f-EPR and PET during reactive blending was clearly illustrated from analysis by FTIR of the separated phases from the Tris-GMA-based reactive blends, and the positive Molau test pointed out to graft copolymerisation in the interface. A mechanism for the formation of the interfacial reaction during the reactive blending process is proposed.  相似文献   

5.
《Polymer》2014,55(26):6725-6734
Differential fast scanning calorimetry (DFSC) was employed on poly(butylene succinate) nanocomposites containing silver nanoparticles and multi-walled carbon nanotubes (MWCNT), in order to identify the temperature range of heterogeneous nucleation caused by both nanofillers. The fast scanning rates also allow investigating self-nucleation by recrystallization experiments approaching the crystallization temperature from low temperatures. The recrystallization behavior of PBSu and its nanocomposites is distinct from all other polymers studied so far as only the previously crystallized part of the material is able to recrystallize, independently on the available large number of nuclei. Since full melting of small crystals at low temperatures is observed this highlights the importance of ordered structures remaining in the polymer melt. On cooling from the melt the neat polymer did not crystallize at rates higher than 70 K/s, while the nanocomposites needed rates of 500 K/s and 300 K/s for silver and MWCNT, respectively. Below 280 K the crystallization kinetics of the matrix was almost the same with the nanocomposite samples. The nucleation mechanism changes at 280 K from heterogeneous to homogeneous. The study further confirms that below the glass transition nucleation and crystallization appears only after approaching the enthalpy value of the extrapolated supercooled liquid by enthalpy relaxation.  相似文献   

6.
《Polymer》2014,55(26):6948-6959
The differential isoconversional method of Friedman is applied to non-isothermal melt crystallization DSC data to obtain effective activation energy ΔE. In comparison to neat PET, ΔE of intercalated 93A MMT clay nanocomposites (PCNs) decreased and highly dependent on the clay content. Hoffman-Lauritzen (H–L) secondary nucleation theory parameters, Kg and U* were evaluated using isoconversional approach of Vyazovkin and Sbirrazzuoli. Crystallization regime transition from regime III is observed at 190°C for neat PET, which shifted to higher temperature range 200°C–208 °C for PCNs. The Kg parameters for both regimes for PET are consistent with our isothermal experiments and reported in literature. However, the Kg values of nanocomposites are highly sensitive to the temperature dependent nucleation activity and ΔE of PET chain motion in melt and are not very much comparable with our isothermal results. Nevertheless, the observed results clearly indicate that the 93AMMT clay layers predominantly act as heterogeneous nucleating sites.  相似文献   

7.
To more accurately investigate the nucleation, crystallization and dispersion behaviors of silica particles in polymers, the composites of PET with monodisperse SiO2-PS core-shell structured particles were prepared with SiO2 size from 380 nm to 35 nm.For these SNPET samples, DSC results showed that the nucleation rate of silica particles increased as their size decreased, in which 35 nm SiO2 particles produced the most obvious nucleation effect. At 2.0 wt.% load of 35 nm silica, Avrami equation proved that the isothermal crystallization rate G of SNPET was ca. 30% higher than that of pure PET and the crystallization activation energy for SNPET was −218.7 kJ mol−1 lower than −196.1 kJ mol−1 for PET. While, the non-isothermal crystallization ΔE for SNPET was −199.8 kJ mol−1 lower than −185.5 for PET.On non-isothermal crystallization, Jeziorny equation presented the primary and secondary crystallization stages in PET and SNPET, in which nano SiO2 accelerated the crystallization rate. Their Ozawa number m was from 2.1 to 2.7, which was smaller than that of Avrami number n.The nucleation and dispersion behaviors of SiO2 particles were directly observed. POM results demonstrated that SNPET samples crystallized more quickly from melt and their crystallization rate increased as silica load increases but accelerated at 2-3 wt.%. The spherulites grew well in PET but their size was smaller in SNPET due to the silica barrier on their growth. SEM and TEM observed the homogeneous silica dispersion morphology and the vivid ordered patterns formed in SNPET. The monodisperse particles are highly expected to give more accurate and valuable references than multi-scale ones in obtaining novel advanced PET composites.  相似文献   

8.
To obtain isotactic polypropylene (iPP) nanocomposites with high β‐crystal content, TMB5, calcium pimelate and calcium pimelate supported on the surface of nano‐CaCO3 were used as β‐nucleating agent and MWCNT filled β‐nucleated iPP nanocomposites were prepared. The effect of different β‐nucleating agent and MWCNT on the crystallization behavior and morphology, melting characteristic and β‐crystal content of β‐nucleated iPP nanocomposites were investigated by DSC, XRD and POM. The results indicated that addition of MWCNT increased the crystallization temperature of iPP and MWCNT filled iPP nanocomposites mainly formed α‐crystal. The β‐nucleating agent can induce the formation of β‐crystal in MWCNT filled iPP nanocomposites. The β‐nucleating ability and β‐crystal content in MWCNT filled β‐nucleated iPP nanocomposites decreased with increasing MWCNT content and increased with increasing β‐nucleating agent content due to the nucleation competition between MWCNT and β‐nucleating agents. It is found that the calcium pimelate supported on the surface of inorganic particles as β‐nucleating agent has stronger heterogeneous β‐nucleation than calcium pimelate and TMB5. The MWCNT filled iPP nanocomposites with high β‐crystal content can be obtained by supported β‐nucleating agent. POLYM. COMPOS., 36:635–643, 2015. © 2014 Society of Plastics Engineers  相似文献   

9.
Poly(ethylene terephthalate) (PET)/SiO2 nanocomposites were prepared by in situ polymerization. The dispersion and crystallization behaviors of PET/SiO2 nanocomposites were characterized by means of transmission electron microscope (TEM), differential scanning calorimeter (DSC), and polarizing light microscope (PLM). TEM measurements show that SiO2 nanoparticles were well dispersed in the PET matrix at a size of 10–20 nm. The results of DSC and PLM, such as melt‐crystalline temperature, half‐time of crystallization and crystallization kinetic constant, suggest that SiO2 nanoparticles exhibited strong nucleating effects. It was found that SiO2 nanoparticles could effectively promote the nucleation and crystallization of PET, which may be due to reducing the specific surface free energy for nuclei formation during crystallization and consequently increase the crystallization rate. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 655–662, 2006  相似文献   

10.
We have prepared polymer nanocomposites reinforced with exfoliated graphene layers solely via melt blending. For this study polyethylene terephthalate (PET) was chosen as the polymer matrix due to its myriad of current and potential applications. PET and PET/graphene nanocomposites were melt compounded on an internal mixer and the resulting materials were compression molded into films. Transmission electron microscopy and scanning electron microscopy revealed that the graphene flakes were randomly orientated and well dispersed inside the polymer matrix. The PET/graphene nanocomposites were found to be characterized by superior mechanical properties as opposed to the neat PET. Thus, at a nanofiller load as low as 0.07 wt%, the novel materials presented an increase in the elastic modulus higher than 10% and an enhancement in the tensile strength of more than 40% compared to pristine PET. The improvements in the tensile strength were directly correlated to changes in elongation at break and indirectly correlated to the fracture initiation area. The enhancements observed in the mechanical properties of polymer/graphene nanocomposites achieved at low exfoliated graphene loadings and manufactured exclusively via melt mixing may open the door to industrial manufacturing of economical novel materials with superior stiffness, strength and ductility.  相似文献   

11.
In this study, poly(ethylene terephthalate) (PET)/SiO2 nanocomposites were synthesized by in situ polymerization and melt‐spun to fibers. The superfine structure and properties of PET/SiO2 fibers were studied in detail by means of TEM, DSC, SEM, and a universal tensile machine. According to the TEM, SiO2 nanoparticles were well dispersed in the PET matrix at a size level of 10–20 nm. The DSC results indicated that the SiO2 nanoparticles might act as a marked nucleating agent promoting the crystallization of the PET matrix from melt but which inhibited the crystallization from the glassy state, owing to the “crosslink” interaction between the PET and SiO2 nanoparticles. The tensile strength of 5.73 MPa was obtained for the fiber from PET/0.1 wt % SiO2, which was 17% higher than that of the pure PET. The fibers were treated with aqueous NaOH. SEM photographs showed that more and deeper pits were introduced onto PET fibers, which provided shortcuts for disperse dye and diffused the reflection to a great extent. According to the K/S values, the color strength of the dyeing increased with increasing SiO2 content. It is found that the deep dyeability of PET fibers was improved greatly. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
To achieve the maximal improvement in the crystallization rate and heat resistance of poly(ethylene terephthalate) (PET), 2.6 mol% of ZnCl2 ionized polyamide (PA)-66 (PA-66–Zn), with a strong coordination ability, is prepared and used as PET nucleator. This study found that the PA-66–Zn heterogeneously nucleates PET more effectively than the CaCl2-ionized PA-66 and non-ionized PA-66 by differential scanning calorimetry, crystallization kinetics, X-ray diffraction, and polarized optical microscopy. This is probably a result of the introduction of stronger ion–dipole interactions (IDIs) between the PET esters and the ionized-PA-66 ZnCl2-coordinating amides, which obviously heightens the PET/PA-66–Zn interfacial compatibility. As shown by scanning electron microscopy, the compatibilization through an appropriate concentration of IDIs promotes the formation of smaller and denser PA-66 crystals with immensely increased nucleator efficiency. Furthermore, the PET/PA-66–Zn with significantly improved crystallinity displays a remarkable increase in heat-resistant temperature, at 21.6 and 55.1°C higher than that of PET/PA-66 and PET, respectively. The results demonstrate that the PA-66–Zn can act as a superior nucleator and as an outstanding heat-resistant agent for PET.  相似文献   

13.
In this work, the graphene/α-SiO2(0001) interface is calculated using density functional theory. On the oxygen-terminated SiO2 surface, atomic structure reconstruction occurs at the graphene/SiO2 interface to eliminate the dangling bonds. The interface interaction is 77 meV/C atom, which indicates that van der Waals force dominates the interaction, but it is stronger than the force between the graphene layers in graphite. The distance between graphene and the SiO2 surface is 2.805 Å, which is smaller than the 3.4 Å interlayer distance of graphite. In addition, the SiO2 substrate induces p-type doping in graphene and opens a small gap of 0.13 eV at the Dirac point of graphene, which is desirable for electronic device applications.  相似文献   

14.
Time-resolved small-angle X-ray scattering (SAXS) measurements were carried out for PET and its copolymers undergoing isothermal crystallization. Wide-angle X-ray diffraction and differential scanning calorimetric measurements were also performed. Our data analysis of the SAXS results for PET and the copolymers clearly demonstrate that the one layer thickness l1 (derived directly from the correlation functions of the measured SAXS profiles) is the lamellar crystal thickness dc, not the amorphous layer thickness da. The observed dc values are found to be always smaller than da, regardless of polymer composition. dc is highly dependent on the crystallization temperature, showing that the degree of supercooling is the major factor determining the thickness of lamellar crystals. No thickening, however, occurs in isothermal crystallizations. The kinked isophthalate units in the copolymer are found to be mostly excluded from the lamellar crystals during the crystallization process, leading to an increase of the amorphous layer thickness. Moreover, the kinked, rigid nature of the isophthalate unit was found to restrict crystal growth along the chain axis of the copolymers and also to lower their crystallinity. Unlike dc, da decreases with crystallization time, causing a reduction of the long period in the lamellar stack. This drop in da is interpreted in this paper by taking into account several factors that could influence crystallization behavior: the da distribution in the lamellar stacks and its variation with time, the number of lamellae in the lamellar stacks and their effect on the SAXS profile, and the relaxation of polymer chains in the amorphous layers.  相似文献   

15.
Novel copper nanowires (CuNWs)/poly(vinylidene fluoride) (PVDF) nanocomposites with high dielectric permittivity (ε′) and low dielectric loss (ε″) were prepared by a precipitation technique followed by melt compression. Their dielectric properties over the broadband frequency range, i.e. 101–106 Hz, were compared with multi-walled carbon nanotubes (MWCNT)/PVDF nanocomposites prepared by the same technique. It was observed that the CuNWs/PVDF nanocomposites had higher dielectric permittivity, lower dielectric loss and thus significantly lower dissipation factor (tan δ) than the MWCNT/PVDF nanocomposites at room temperature. This behavior was ascribed to a higher conductivity of the fresh core of the CuNWs relative to the MWCNT, which provided the composites with a higher amount of mobile charge carriers participating in the interfacial polarization. Moreover, the presence of oxide layers on the CuNWs surfaces diminished the conductive network formation leading to a low dielectric loss.  相似文献   

16.
Reduced graphene oxide (rGO) with various surface structures was prepared by reducing graphene oxide (GO) with hydrazine hydrate (N2H4), sodium borohydride (NaBH4) and l ‐ascorbic acid, respectively. The resulting rGO were used to fabricate rGO/polypropylene (PP) nanocomposites by a melt‐blending method. The surface structure of rGO as well as multifunctional properties of rGO/PP nanocomposites were thoroughly investigated. It was shown that rGO with highest C/O ratio could be obtained by reducing GO with N2H4. The crystallization behaviors, tensile strength, thermal conductivity and thermal stability of rGO/PP nanocomposites were significantly improved with the increase of C/O ratio of rGO. For example, with only 1 phr (parts per hundred PP) rGO reduced by N2H4, the degree of crystallinity, tensile strength, maximum heat decomposition temperature and thermal conductivity of PP nanocomposite were increased by 6.2%, 20.5%, 48.0 °C and 54.5%, respectively, compared with those of pure PP. Moreover, the thermal degradation kinetics indicated that the decomposition activation energy of rGO/PP nanocomposites could be enhanced by adding rGO with higher C/O ratio. © 2018 Society of Chemical Industry  相似文献   

17.
Polyethylene terephthalate (PET) melt‐spun fibers were modified with multiwall carbon nanotubes (MWCNT) to obtain conductive microfibers smaller than 90 μm in diameter. Physical properties such as crystallinity and orientation of as‐spun fibers were studied by X‐ray diffraction, Raman spectroscopy, and microscopy techniques at different draw ratios (DR) and MWCNT concentrations. Morphological and orientation analysis of MWCNT after melt‐spinning process showed agglomerates formation and highly oriented CNTs. The study of the orientation of PET crystalline phase in drawn fibers proved that the addition of nanoparticles decreases the orientation of crystalline units inside the fibers. The orientation of MWCNT as well as that of PET chains was studied using Raman spectroscopy at different DR and a high degree of CNT orientation was observed under high DR conditions. Mechanical and electrical properties of as‐spun fibers were also investigated. Our results showed that it was possible to achieve conductive fibers at a MWCNT concentration of 2% w/w, and more conductive fibers using higher DR were also obtained without increasing the MWCNT concentration. Mechanical properties results showed interestingly high value of maximum tensile strain at break (εmax) of nanocomposite fibers, up to three times more than pure PET fibers. POLYM. ENG. SCI., 50:1956–1968, 2010. © 2010 Society of Plastics Engineers  相似文献   

18.
A graphene film was synthesized using chemical vapor deposition and then transferred to a flexible poly(ethylene terephthalate) (PET) substrate. The nanomechanical properties of the graphene/PET (G/PET) system were investigated by nanoindentation. The hardness (H) and reduced modulus (Er) of PET and G/PET were calculated using the Oliver–Pharr method with corrections for creep and material pile-up around the contact. The H and Er of the G/PET were 97% and 16% higher respectively than on the PET substrate. The increase in Er can be attributed to the high in-plane elastic modulus of graphene, the smaller increase in Er than H merely reflecting the far-field nature of the elastic stress field compared to the plastic stress field. The creep behavior of the PET is strongly hindered by the presence of the graphene overlayer. A simple volume contribution model was adopted to calculate the elastic modulus of the graphene overlayer and the computed values were of the right magnitude for graphene film.  相似文献   

19.
The electrical and dielectric properties of polyamide 6 (PA6)/multi-walled carbon nanotubes (MWCNT) nanocomposites prepared by melt mixing were investigated by employing dielectric relaxation spectroscopy in broad frequency (10?2–106 Hz) and temperature ranges (from ?150 to 150 °C). Transmission electron microscopy revealed a good state of CNT dispersion in the polymeric matrix. The percolation threshold (pc) was found to be 1.7 vol.% by using the dependence of both dc conductivity and critical frequency (fc) from dc to ac transition on vol.% concentration in MWCNT. The actual aspect ratio of the nanotubes in the nanocomposites was calculated using a theoretical model (proposed by Garboczi et al.) and the obtained value was correlated with the pc value according to the excluded volume theory. Additionally, the contact resistance (Rc) between the conductive nanotubes was found to be ~105 Ω. Investigation of the temperature dependence of conductivity revealed a charge transport which is controlled by thermal fluctuation-induced tunneling for temperatures up to the glass transition. Finally, it was shown that the addition of nanotubes has no significant influence on the relaxation mechanisms of the PA6 matrix.  相似文献   

20.
In the CaO-SiO2-Al2O3-Fe2O3 pseudoquaternary system, the solid solutions of Ca2(AlxFe1−x)2O5, with x<0.7 (ferrite), Ca2SiO4 (belite), Ca3Al2O6 (C3A) and Ca12Al14O33 (C12A7), were crystallized out of a complete melt during cooling at 8.3 °C/min. Upon cooling to 1370 °C, both the crystals of ferrite with x=0.41 and belite would start to nucleate from the melt. During further cooling, the x value of the precipitating ferrite would progressively increase and eventually approach 0.7. At ambient temperature, the ferrite crystals had a zonal structure, the x value of which successively increased from the cores toward the rims. The value of 0.45 was confirmed for the cores by EPMA. The chemical formula of the rims was determined to be Ca2.03[Al1.27Fe0.68Si0.02]Σ1.97O5 (x=0.65). As the crystallization of ferrite and belite proceeded, the coexisting melt would become progressively enriched in the aluminate components. After the termination of the ferrite crystallization, the C3A and belite would immediately crystallize out of the melt, followed by the nucleation of C12A7. The C12A7 accommodated about 2.1 mass% Fe2O3 in the chemical formula Ca12.03[Al13.61Fe0.37]Σ13.98O33, being free from the other foreign oxides (SiO2 and P2O5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号