首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, the reversible addition-fragmentation chain transfer (RAFT) polymerization was utilized to synthesize the amphiphilic diblock copolymers of poly(methacrylic acid)-b-poly(2,2,2-trifluoroethyl methacrylate) (PMAA-b-PTFEMA) via one-pot two-step reaction protocol. The controlled radical polymerization of MAA monomer was first carried out in pure water by using 4-cyanopentanoic acid dithiobenzoate (CADB) as chain transfer agent. Subsequently, the as-synthesized PMAA homopolymers with dithiobenzoate end-groups were employed as macro-CTA and chain-extended in situ with the hydrophobic TFEMA monomer. The reactions were carried out in 1,4-dioxane/water medium. Both the polymerization of PMAA and PTFEMA blocks showed the well controllability on the molecular weighs and distributions. It was found that the amphiphilic diblock copolymers formed the stable spherical particles via the polymerization-induced self-assembly. Meanwhile, the effect of various parameters, such as the concentration ratio of TFEMA monomer over PMAA macro-CTA, the solvent condition (different ratio of 1,4-dixane/water), and the pH, on the RAFT polymerization of TFEMA monomer were investigated in detail. Their kinetic results suggested that the propagation of TFEMA monomer on the macro-CTA was performed at the particle/water interfaces. The concentration of chain transfer agents at the interfaces determined the polymerization rate. Finally, the stability of the fluorinated polymer dispersions was also evaluated in this work.  相似文献   

2.
Ying Qian Hu  Bong Sup Kim 《Polymer》2007,48(12):3437-3443
The polymerization of 2-(diisopropylamino)ethyl methacrylate (DPA) by RAFT mechanism in the presence of 4-cyanopentanoic acid dithiobenzoate in 1,4-dioxane was studied. The DPA homopolymer was employed as a macro chain transfer agent to synthesize pH-sensitive amphiphilic block copolymers using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the hydrophilic block. 1H NMR and GPC measurements confirmed the successful synthesis of these copolymers. Potentiometric titrations and fluorescence experiments proved that the copolymers underwent a sharp transition from unimers to micelles at a pH of ∼6.7 in phosphate buffered saline solutions. It was found that the hydrophilic/hydrophobic balance of these block copolymers had no apparent effect on their pH-induced micellization behaviors. The DLS investigation revealed that the micelles have a mean hydrodynamic diameter below 60 nm with a narrow size distribution.  相似文献   

3.
A range of poly(2-oxazoline) (POx)-based amphiphilic block copolymers were synthesized using 4-cyano-4-(dodecylthiocarbonothioylthio)pentyl-4-methylbenzenesulfonate (CDPS) as a dual initiator for reversible addition-fragmentation chain transfer (RAFT) polymerization and cationic ring-opening polymerization (CROP) in a one-step procedure. Methyl (meth)acrylate, butyl (meth)acrylate, tert-butyl (meth)acrylate, and N-isopropylacrylamide were polymerized for the hydrophobic block, and 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline were used as the hydrophilic block. RAFT polymerization and CROP proceeded independently in a controlled manner and resulted in amphiphilic block copolymers with a narrow molecular weight distribution. CDPS was found to be a useful dual initiator for the one-step synthesis of POx-based amphiphilic block copolymers via a combination of RAFT polymerization and CROP.  相似文献   

4.
Kok Hou Wong 《Polymer》2007,48(17):4950-4965
The synthesis of polystyrene-block-poly(N,N-dimethylacrylamide) (PS-b-PDMA) via RAFT polymerization was investigated in detail. Two different RAFT agents - benzyl dithiobenzoate and 3-(benzylsulfanylthiocarbonylsufanyl) propionic acid, were employed to prepare polystyrene macroRAFT agents with molecular weights varying between 3000 g mol−1 and 62,000 g mol−1 and polydispersities between 1.1 and 1.4. Chain extensions with N,N-dimethylacrylamide (DMA) were carried out using a constant monomer to RAFT agent concentration ([DMA]/[RAFT] = 500), to compare the rate of polymerization in dependency of the polystyrene chain length. A decreasing rate of polymerization with increasing block length was observed. Depending on the sizes of the first block and type of RAFT agents used, chain extension polymerization with DMA was found to be incomplete, leading to significant low molecular weight tailing in the GPC analyses. Block copolymers prepared using 3-(benzylsulfanylthiocarbonylsufanyl) propionic acid, followed the expected molecular weight evolutions with polydispersity indices of 1.2-1.4. In contrast, block copolymers using benzyl dithiobenzoate clearly showed bimodal molecular weight distributions, especially when the longest PS macroRAFT agent with a molecular weight of 38,000 g mol−1 was employed. These amphiphilic block copolymers were used to fabricate honeycomb structured porous films using the breath figure technique. The regularity of the film was considerably influenced by the humidity of the environment, which could be controlled by the rate of the airflow or the humidity in the casting chamber. The interaction between the hydrophilic block copolymer and the humidity was found responsible for the delicate equilibrium during the casting process, which prevented high pores regularity at very low (below 50%) and at elevated (above 80%) humidity. The interactions of the hydrophilic block with the humidity were observed to superimpose an additional nano-scaled order onto the hexagonal micron-sized porous array. Pores, which are created by encapsulation of water droplets, were found to be more hydrophilic than the surface. Confocal microscopy studies were employed to locate hydrophilic blocks within the film using a fluorescence labeled PDMA polymer.  相似文献   

5.
Reversible-addition fragmentation chain transfer (RAFT) polymerization enabled the synthesis of novel, stimuli-responsive, AB and ABA block copolymers. The B block contained oligo(ethylene glycol) methyl ether methacrylate (OEG) and was permanently hydrophilic in the conditions examined. The A block consisted of diethylene glycol methyl ether methacrylate (DEG) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMA). The A block displayed both salt- and temperature-response with lower critical solution temperatures (LCSTs) dependent on the molar content of TMA and the presence of salt. Higher TMA content in the AB diblock copolymers increased the critical micelle temperatures (CMT) in HPLC-grade water due to an increased hydrophilicity of the A block. Upon addition of 0.9 wt% NaCl, the CMTs of poly(OEG-b-DEG95TMA5) decreased from 50 °C to 36 °C due to screening of electrostatic repulsion between the TMA units. ABA triblock copolymers displayed excellent hydrogel properties with salt- and temperature-dependent gel points. TMA incorporation in the A block increased the gel points for all triblock copolymers, and salt-response increased with higher TMA composition in the A block. For example, poly(DEG98TMA2-b-OEG-b-DEG98TMA2) formed a hydrogel at 40 °C in HPLC-grade water and 26 °C in 0.9 wt% NaCl aqueous solution. These salt- and temperature-responsive AB diblock and ABA triblock copolymers find applications as drug delivery vehicles, adhesives, and hydrogels.  相似文献   

6.
Qianling Cui  Feipeng Wu  Erjian Wang 《Polymer》2011,52(8):1755-5922
A novel oxazolidine based acid-labile monomer N-acryloyl-2,2-dimethyl-1,3-oxazolidine (ADMO) was synthesized and polymerized by reversible addition fragmentation chain transfer (RAFT) polymerization using poly(ethylene glycol) based chain transfer agent (PEG-CTA). The diblock copolymers PEG-b-PADMO were composed of hydrophilic PEG with fixed length and hydrophobic PADMO with different lengths, which formed core-shell micelles in water. Morphologies and sizes of micelles were obtained by transmission electron microscopy (TEM) and dynamic light scattering (DLS), which showed that the shapes of polymeric aggregates developed from small spherical micelles, worm-like micelles to larger size of vesicles, as the length of PADMO increased. The hydrolysis kinetics of the micelles was studied using 1H NMR, DLS and release of loaded Nile Red dye, whose rate strongly depended on pH and micellar structure. It led to the disruption of polymeric micelles and concomitant release of the guest molecules, due to the transformation of hydrophobic PADMO into hydrophilic poly(2-hydroxyethyl acrylamide) (PHEAM).  相似文献   

7.
Weidong Zhang 《Polymer》2008,49(21):4569-4575
The novel trifunctional reversible addition-fragmentation chain transfer (RAFT) agent, tris(1-phenylethyl) 1,3,5-triazine-2,4,6-triyl trithiocarbonate (TTA), was synthesized and used to prepare the three-armed polystyrene (PS3) via RAFT polymerization of styrene (St) in bulk with thermal initiation. The polymerization kinetic plot was first order and the molecular weights of polymers increased with the monomer conversions with narrow molecular weight distributions (Mw/Mn ≤ 1.23). The number of arms of the star PS was analyzed by gel permeation chromatography (GPC), ultraviolet visible (UV-vis) and fluorescence spectra. Furthermore, poly(styrene-b-N-isopropylacrylamide)3 (PS-b-PNIPAAM)3, the three-armed amphiphilic thermosensitive block copolymer, with controlled molecular weight and well-defined structure was also successfully prepared via RAFT chain extension method using the three-armed PS obtained as the macro-RAFT agent and N-isopropylacrylamide as the second monomer. The copolymers obtained were characterized by GPC and 1H nuclear magnetic resonance (NMR) spectra. The self-assembly behaviors of the three-armed amphiphilic block copolymers (PS-b-PNIPAAM)3 in mixed solution (DMF/CH3OH) were also investigated by high performance particle sizer (HPPS) and transmission electron microscopy (TEM). Interestingly, the lower critical solution temperature (LCST) of aqueous solutions of the three-armed amphiphilic block copolymers (PS-b-PNIPAAM)3 decreased with the increase of relative length of PS in the block copolymers.  相似文献   

8.
A new selenium-based reversible addition-fragmentation chain transfer (RAFT) agent, 4-cyanopentanoic acid diselenobenzoate (RAFT-Se), was synthesized and utilized in the surface-initiated RAFT polymerization of 4-vinylpyridine (4VP) on silicon substrate. The results indicate that the RAFT-Se can control the surface-initiated RAFT polymerization, as evidenced by the number-average molecular weight that increase linearly with monomer conversion, molecular weights that agreed well with the predicted values, and the relatively low polydispersity indexes. The surface-initiated RAFT polymerization with the RAFT-Se was the same polymerization mechanism as its analog, 4-cyanopentanoic acid dithiobenzoate (RAFT-S). The grafting density of the poly(4-vinylpyridine) brushes prepared in the presence of RAFT-Se (σRAFT-Se) and RAFT-S (σRAFT-S) was estimated to be about 0.51 and 0.66 chains/nm2, respectively. In addition, the end of polymer chains on silicon substrate contains selenium element which may be useful in biosensor applications.  相似文献   

9.
Well‐defined poly(dimethylsiloxane‐b‐styrene) diblock copolymers were prepared by reversible addition–fragmentation chain‐transfer (RAFT) polymerization. Monohydroxyl‐terminated polydimethylsiloxane was modified to form a functional polydimethylsiloxane/macro‐RAFT agent, which was reacted with styrene to form the diblock copolymers. The chemical compositions and structures of the copolymers were characterized by proton nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and gel permeation chromatography. The surface properties and morphology of the copolymers were investigated with static water contact‐angle measurements, X‐ray photoelectron spectroscopy, transmission electron microscopy, and atomic force microscopy, which showed a low surface energy and microphase separation surfaces that were composed of hydrophobic domains from polydimethylsiloxane segments. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
毛国梁  王欣  宁英男  马志 《化工进展》2012,31(10):2282-2287
首先介绍了可逆加成-断裂链转移聚合(RAFT)的聚合机理及其常用的RAFT试剂,并与其它两种活性可控自由基聚合[氮氧化合物媒介的自由基聚合(NMP)和原子转移自由基聚合(ATRP)]进行了简单的优缺点对比。其次,介绍了近些年在基于RAFT聚合制备功能化聚烯烃嵌段聚合物研究中取得的进展,重点综述了制备功能化聚烯烃嵌段聚合物时所采用的6种方法,包括①烯烃配位聚合与RAFT聚合相结合;②阴离子聚合与RAFT聚合相结合;③阳离子聚合与RAFT聚合相结合;④Click反应与RAFT聚合相结合;⑤开环聚合与RAFT聚合相结合;⑥叶立德活性聚合与RAFT聚合相结合。最后,对基于RAFT聚合策略设计合成功能化聚烯烃嵌段聚合物的研究前景与实际应用进行了展望。  相似文献   

11.
Lei Yang  Yingwu Luo  Xinzhi Liu  Bogeng Li 《Polymer》2009,50(18):4334-4342
It has been well documented that RAFT miniemulsion polymerization has broader molecular weight distribution, compared with its bulk polymerization counterpart. Interestingly, it was found that the PDI value of RAFT miniemulsion polymerization of methyl methacrylate (MMA) mediated by 2-cyranoprop-2-yl dithiobenzoate (CPDB) was still as low as its corresponding bulk polymerization did. PDI could be as low as 1.13 even with typical sodium dodecyl sulfate (SDS, 1 wt%, surfactant) and n-hexadecane (HD, 2 wt%, costablizer) concentrations. When the polymerization was carried out at 60 °C, a dramatic increase in PDI (>1.4) was observed after 80% monomer conversion since RAFT addition reaction became diffusion-controlled. Increasing the polymerization temperature to 80 °C could reduce the PDI to 1.2 even at 100% monomer conversion. The compartmentalization effect of radicals was surprisingly absence before 30% monomer conversion but became pronounced afterwards in the miniemulsion polymerization. Thus, it still took less time to finish the miniemulsion polymerization with the increase of the surfactant levels.  相似文献   

12.
Reversible addition-fragmentation chain transfer (RAFT) polymerization of an asymmetrical divinyl monomer, vinyl methacrylate (VMA), was investigated under various conditions. RAFT polymerization of VMA using a dithioester-type chain transfer agent (CTA) under suitable conditions afforded soluble polymers with a high content of pendant vinyl ester side chains in sufficient yields (>70%). The monomer concentration, the nature of the CTA, and the CTA/initiator ratio were found to affect the polymerization reaction and the structure of the resulting polymers; this behavior is attributed to the relative propensities for intermolecular propagating/cross-linking reactions and intramolecular cyclization. A kinetic study of the RAFT polymerization of VMA with the dithioester-type CTA 1 suggested that the propagation reaction of the methacryloyl group proceeded predominantly with a certain level of intramolecular cyclization during the early stage of the polymerization and intermolecular cross-linking during the final stage of the polymerization. Block copolymers with one segment featuring pendant vinyl functionality were synthesized by RAFT polymerization of VMA using poly(methyl methacrylate) as a macro-chain transfer agent (macro-CTA).  相似文献   

13.
We report the application of reversible addition-fragmentation chain transfer (RAFT) polymerization using poly(dimethylsiloxane) (PDMS) chain transfer agents toward the synthesis of a variety of diblock copolymers containing tert-butyldimethylsilyl methacrylic (MASi) monomer units. The methodology relies on the synthesis of PDMS monofunctional chain transfer agents easily available in one synthetic step from commercially available hydroxylated PDMSs. The RAFT process enables access to polymer chains with narrow molar mass distributions and high conversions. Data from differential scanning calorimetric measurements revealed that the diblock copolymers exhibited two glass transition temperatures, corresponding to the PDMS- and PMASi-enriched phases, respectively. Copolymerizations of MASi and butyl methacrylate (BMA) within the second block led to immiscible phases with lower glass transition temperatures than PDMS-block-PMASi copolymers.  相似文献   

14.
Uma Chatterjee 《Polymer》2005,46(24):10699-10708
Amphiphilic di- and tri-block copolymers of poly(methyl methacrylate) (PMMA) and poly(2-dimethylamino)ethyl methacrylate (PDMAEMA) have been synthesized by atom transfer radical polymerization (ATRP) at ambient temperature (35 °C) in the environment-friendly solvent, aqueous ethanol (water 16 vol%) using CuCl/o-phenanthroline as the catalyst. The PDMAEMA blocks are contaminated with ethyl methacrylate (EMA) residues to the extent of 1-2 mol% of DMAEMA depending on the length of the PDMAEMA block. The EMA forms through the autocatalyzed ethanolysis of the DMAEMA monomer and undergoes random copolymerization with the latter. The rate of ethanolysis is unexpectedly greater in the aqueous ethanol than in neat ethanol, which has been attributed to the higher polarity of the former than of the latter. In contrast to the ethanolysis no hydrolysis of DMAEMA in the aqueous ethanol medium could be detected for 133 h. The block copolymers form micelles in water. Their solubility and CMC in neutral water have been studied. Dynamic light scattering (DLS) studies reveal that for a fixed degree of polymerization (DP) of the PMMA block the hydrodynamic diameter of the micelles in methanolic water (water 95 vol%) increases at a faster rate with the DP of the PDMAEMA block when it is much greater than that of the PMMA block compared to when it is less than or close to that of the latter.  相似文献   

15.
A novel amphiphilic phosphorus-containing polymer was prepared by RAFT polymerization of 3-[2-(acryloyloxy)ethoxy]-3-oxopropyl(phenyl) phosphinic acid (AOPA). The monomer was first synthesized by esterification of 3-[hydroxy(phenyl)phosphoryl]propanoic acid and 2-hydroxyethyl acrylate, and then the polymerizations were performed at 60 °C. The polymerization was well controlled, and the polymers with “well-defined” structures were successfully synthesized. The polymers can self-assemble to form the micelles in distilled water due to the special amphiphilic structure, and the shell of the micelles could be cross-linked by the coordination of phosphinic acid with cations. The property may promote the polymers to be used in the ionic exchange for the environment protection.  相似文献   

16.
Stella C Hadjiyannakou 《Polymer》2004,45(11):3681-3692
Linear, amphiphilic diblock copolymers based on the nonionic, hydrophilic monomer methoxy hexa(ethylene glycol) methacrylate (HEGMA) and the hydrophobic monomer benzyl methacrylate (BzMA) of different molecular weights and compositions were synthesized by group transfer polymerization. The molecular weights and comonomer compositions of these copolymers were characterized by gel permeation chromatography and proton nuclear magnetic resonance (1H NMR) spectroscopy, respectively. Dynamic light scattering on aqueous solutions of the diblock copolymers indicated that all the copolymers formed aggregates whose size increased with the % w/w BzMA composition and with the overall molecular weight of the linear chains. Turbidimetry on 1% w/w aqueous copolymer solutions was used to determine the cloud points, which were found to increase with the composition in hydrophilic units and the linear chain molecular weight. After polymer characterization, xylene/water and diazinon (pesticide)/water emulsions were prepared using the above polymers as stabilizers at 1% w/w polymer concentration and at different overall organic phase/water ratios. At an organic phase/water mass ratio of 4/1, the lower molecular weight (2500 and 5000 g mol−1) diblock copolymers provided stable single-phase o/w emulsions, matching the behavior of commercially available hydrophilic Pluronics.  相似文献   

17.
马剑英 《精细化工》2012,29(9):898-901,920
该文合成了一种双官能团的RAFT试剂——S,S'-二(α,α'-二甲基-α″-乙酸)三硫代碳酸酯(BDAT)。以其为链转移剂,在微乳液体系中进行了甲基丙烯酸甲酯的RAFT聚合。分别讨论了聚合反应温度和链转移剂浓度对聚合反应的影响,并对相关的聚合反应动力学常数进行了计算。研究结果表明,在微乳液中进行的RAFT聚合具有显著的活性聚合的特征。聚合产物的相对分子质量(简称分子量,下同)随着转化率的提高而线性增加,同时聚合产物具有较窄的分子量分布,聚合过程随着链转移剂浓度的增加而逐渐可控。另外,利用透射电子显微镜对链转移剂浓度对微乳液粒子尺寸的影响也进行了考察,扫描电镜照片表明,微乳液聚合所得乳液粒子呈现单分散性状态,并且粒子尺寸随着链转移剂浓度的增加而逐渐增加。  相似文献   

18.
Multiblock copolymers (mBCPs) could offer new opportunities to design new nanomaterials with multifunctions or enhanced properties in a cost-effective way. However, it is still very challenging to obtain high degree of polymerization in each block of mBCPs with large block number using one-pot synthesis via controlled radical polymerizations. This is due to the accumulation of the dead chains throughout the many step polymerization. In this work, we developed a new highly efficient strategy for preparing mBCPs with large block number using one-pot reversible addition–fragmentation chain transfer (RAFT) emulsion polymerization, where every polymer block was formed by sequential addition of monomers. We achieved high block degree of polymerizations (~100 per block) for a model system of “octablock” polystyrene (PS) in just 2 hr per block. Experimentally measured molecular weights are in excellent agreement with theoretical predictions. The dead chains generated through the polymerization are negligible due to the low initiator concentration. Yet the polymerization rates are still very fast due to the heterogeneous advantages of emulsion polymerization. We have also applied this strategy to a series of mBCPs from diblock (PS176-PnBA286)1 to octablock (PS176-PnBA286)4 (PnBA for poly(n-butyl acrylate)). The high degree of polymerization in our mBCPs ensures microphase separation even though PS/PnBA system is known for small χ values. We have also found that the tensile properties of our mBCPs increase significantly with increased number of blocks. Our work reveals that the number of blocks is an important molecular variable for tuning the mechanical properties of block copolymers.  相似文献   

19.
Amphiphilic block copolymers have been investigated for their utilization in emulsion polymerization of butyl methacrylate. Special attention has been paid to the adsorption mechanism of the block copolymers from systematic measurements of equilibrium adsorption isotherms. A series of well-defined water-soluble amphiphilic block copolymers, composed of poly(butyl methacrylate) and poly(sodium methacrylate) blocks, were synthesized by anionic polymerization of butyl methacrylate and tert-butyl methacrylate followed by the thermal deprotection of the tert-butyl ester groups and final hydrolysis. The number density of emulsion polymer particles NP varied as [copolymer]α, α lying between 0.44 and 0.73 according to the hydrophilic content of the copolymers. In contrast with SDS taken as a reference emulsifier, the adsorption of the copolymers was very strong and this provided quite an efficient stabilization of the polymer particles during emulsion polymerization, even at low concentrations (<10−4 mol L−1) and low coverages (<10% of the interfacial area).  相似文献   

20.
A series of diblock, triblock and star-block copolymers composed of polystyrene and poly(acrylic acid) were synthesized by ATRP. The structure of the copolymers, the size of the blocks and the composition were varied, keeping however a short polystyrene block and a poly(acrylic acid) content larger than 60 mol% to allow solubility in alkaline water. Their micellization was studied by static and dynamic light scattering and the influence of their structural characteristics on the aggregation number, Nagg, was examined at low salt concentration and alkaline pH. It was shown that micelles were in thermodynamic equilibrium and that Nagg followed the power law NaggNA−0.9NS2 (with NA, the total number of acrylic acid units in the copolymer and NS, the total number of styrene units), that is characteristic of amphiphile micelles formed from strongly segregated block copolymers. Moreover, Nagg was independent of salt concentration in the investigated range. The same copolymers were previously used as stabilizers in emulsion polymerization [Macromolecules 34 (2001) 4439]. The final latex particle concentration, Np, was compared with Nm, the initial micelle concentration. This enabled us to conclude that among the block copolymers studied, those with high acid content behaved like low molar mass surfactants. In contrast, those with low acid content formed stable micelles that could be directly nucleated to create latex particles, allowing a good control over Np.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号