首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
JC Shin  C Zhang  X Li 《Nanotechnology》2012,23(30):305305
We report a non-lithographical method for the fabrication of ultra-thin silicon (Si) nanowire (NW) and nano-sheet arrays through metal-assisted-chemical-etching (MacEtch) with gold (Au). The mask used for metal patterning is a vertical InAs NW array grown on a Si substrate via catalyst-free, strain-induced, one-dimensional heteroepitaxy. Depending on the Au evaporation angle, the shape and size of the InAs NWs are transferred to Si by Au-MacEtch as is (NWs) or in its projection (nano-sheets). The Si NWs formed have diameters in the range of ~25-95 nm, and aspect ratios as high as 250 in only 5 min etch time. The formation process is entirely free of organic chemicals, ensuring pristine Au-Si interfaces, which is one of the most critical requirements for high yield and reproducible MacEtch.  相似文献   

2.
We report on the selective area growth of GaN nanowires (NWs) on nano-patterned Si(111) substrates by metalorganic chemical vapor deposition. The nano-patterns were fabricated by the oxidation of Si followed by the etching process of Au nano-droplets. The size of formed nano-pattern on Si(111) substrate was corresponding to the size of Au nano-droplet, and the diameter of GaN NWs grown was similar to the diameter of fabricated nano-pattern. The interesting phenomenon of using the nano-patterned Si(111) substrates is the formation of very clear substrate surface even after the growth of GaN NWs. However, in the case of GaN NWs grown using Au nano-droplets, there was several nanoparticles including GaN bulk grains on the Si(111) substrates. The smooth surface morphology of nano-patterned Si(111) substrates was attributed to the presence of SiO2 layer which prevents the formation of unnecessary GaN particles during the GaN NW growth. Therefore, we believe that nano-patterning method of Si(111) which was obtained by the oxidation of Si(111) substrate and subsequent Au etching process can be utilized to grow high-quality GaN NWs and its related nano-device applications.  相似文献   

3.
Zhou K  Jee SW  Guo Z  Liu S  Lee JH 《Applied optics》2011,50(31):G63-G68
The optical properties of metal nanoparticle (NP)-coated silicon nanowires (Si NWs) are theoretically investigated using COMSOL Multiphysics commercial software. A geometrical array of periodic Si NWs coated with metal NPs is proposed. The simulation demonstrates that light absorption could be enhanced significantly in a long wavelength region of the solar spectrum, based upon the localized surface plasmons generated around metal NPs. Various metal NPs, such as Au, Ag, and Al, are all found to increase their light absorption while in contact with Si NWs, in which the Au NPs show the best result in light enhancement. This theoretical work might prove useful in providing a fundamental understanding toward improving further the efficiency of Si wired solar cells.  相似文献   

4.
Cai W  Che Y  Pelz JP  Hemesath ER  Lauhon LJ 《Nano letters》2012,12(2):694-698
Ballistic electron emission microscopy measurements on individual "end-on" Au Schottky contacts to vertical Si nanowires (NWs) indicate that the local Schottky barrier height at the contact edge is 23 ± 3 meV lower than at the contact center. Finite-element electrostatic simulations suggest that this is due to a larger interface electric field at the contact edge resulting from (equilibrium) positive charge in Si/SiO(2) interface states near the Au/NW contact, induced by local band bending due to the high work function Au film.  相似文献   

5.
Kim JH  An HH  Woo HJ  Yoon CS 《Nanotechnology》2008,19(12):125604
During pyrolysis of polyimide (PI) thin film, amorphous silicon oxide nanowires (SiO(x)NWs) were produced on a large scale through heat treatment of an Au nanoparticle/PI/Si thin film stack at 1000?°C. It was shown that carbonization of the PI film preceded the nucleation of the SiO(x)NWs. The formation of the SiO(x)NWs was sustained by the oxygen derived from carbonization of the polyimide thin film while Si was provided from the substrate. Au nanoparticles promoted the SiO(x)NW growth by inducing localized melting of the Si substrate and by catalyzing the nanowire growth.  相似文献   

6.
Silicon nanowires (Si NWs) are the emerging nanostructures for future nanodevices. In this work we have prepared them by electron beam evaporation (EBE) through the vapor-liquid-solid (VLS) mechanism. We discuss the growth of epitaxial NWs by EBE and the possibility to control their orientation and length by changing the experimental conditions. Moreover, the effects of the surface contamination and of the Au cluster preparation on the NWs structural properties and density will be discussed. We demonstrate that any O contamination has to be avoided since just a very thin native SiO2 layer stops ad-atom diffusion on the surface and inhibits the NWs growth. Au cluster preparation has a determinant role too: by varying the procedure for their formation, it is possible to change NWs density and length. In particular, we observed that by evaporating Au on the heated substrate, the droplets active to promote NW growth are immediately formed and a faster growth process starts. The growth rate is about a factor of 4 times higher than in the sample where the Au is evaporated at room temperature and the cluster formed after a subsequent thermal annealing. On the contrary, the slower process allows the atom arrangement and ordering in an epitaxial manner, and a precise control of NW orientation can be achieved.  相似文献   

7.
This paper reports on the growth of Si nanowires (NWs) by SiH4/H2 plasmas using the non-noble Ga-nanoparticles (NPs) catalysts. A comparative investigation of conventional Si-NWs vapour–liquid–solid (VLS) growth catalyzed by Au NPs is also reported. We investigate the use of a hydrogen plasma and of a SiH4/H2 plasma for removing Ga oxide shell and for enhancing the Si dissolution into the catalyst, respectively. By exploiting the Ga NPs surface plasmon resonance (SPR) sensitivity to their surface chemistry, the SPR characteristic of Ga NPs has been monitored by real time spectroscopic ellipsometry in order to control the hydrogen plasma/Ga NPs interaction and the involved processes (oxide removal and NPs dissolution by volatile gallium hydride). Using in situ laser reflectance interferometry the metal catalyzed Si NWs growth process has been investigated to find the effect of the plasma activation on the growth kinetics. The role of atomic hydrogen in the NWs growth mechanism and, in particular, in the SiH4 dissolution into the catalysts, is discussed. We show that while Au catalysts because of the re-aggregation of NPs yields NWs that do not correspond to the original size of the Au NPs catalyst, the NWs grown by the Ga catalyst retains the diameter dictated by the size of the Ga NPs. Therefore, the advantage of Ga NPs as catalysts for controlling NWs diameter is demonstrated.  相似文献   

8.
A well‐ordered two‐dimensional (2D) network consisting of two crossed Au silicide nanowire (NW) arrays is self‐organized on a Si(110)‐16 × 2 surface by the direct‐current heating of ≈1.5 monolayers of Au on the surface at 1100 K. Such a highly regular crossbar nanomesh exhibits both a perfect long‐range spatial order and a high integration density over a mesoscopic area, and these two self‐ordering crossed arrays of parallel‐aligned NWs have distinctly different sizes and conductivities. NWs are fabricated with widths and pitches as small as ≈2 and ≈5 nm, respectively. The difference in the conductivities of two crossed‐NW arrays opens up the possibility for their utilization in nanodevices of crossbar architecture. Scanning tunneling microscopy/spectroscopy studies show that the 2D self‐organization of this perfect Au silicide nanomesh can be achieved through two different directional electromigrations of Au silicide NWs along different orientations of two nonorthogonal 16 × 2 domains, which are driven by the electrical field of direct‐current heating. Prospects for this Au silicide nanomesh are also discussed.  相似文献   

9.
If the silicon industry is to successfully integrate ZnO nanowires (NWs) into existing devices to fully utilise the piezoelectric or optical properties of ZnO NWs, then a detailed understanding of the effect of metal interconnects on the morphology of the NWs during growth needs to be obtained. In this study, ZnO NWs were hydrothermally grown at 90 °C on Au, Ni and a Si substrate control to mimic the typical surfaces of a MetalMUMPs MEMS chip. The growth rate was significantly affected by the metal film below the ZnO seed layer, which was mainly attributed to changes in the roughness and grain size of the seed layer deposited, with the growth rate decreasing with increasing roughness. The growth rate on Si and Au surfaces also increased when isolated from the Ni samples, suggesting that Ni cations released in the solution could also inhibit growth by electrostatically attaching to the NWs surface and acting as a barrier to the incorporation of zinc ions. Furthermore, photoluminescence studies show the addition of metal layers to the substrate reduces the optical quality of the produced ZnO NWs.  相似文献   

10.
Nanoporous Si(111) substrates are used to study the effects of Au catalyst coarsening on the nucleation of vapor–liquid–solid‐synthesized epitaxial Ge nanowires (NWs) at temperatures less than 400 °C. Porous Si substrates, with greater effective interparticle separations for Au surface diffusion than nonporous Si, inhibit catalyst coarsening and agglomeration prior to NW nucleation. This greatly reduces the variation in wire diameter and length and increases the yield compared to nucleation on identically prepared nonporous Si substrates.  相似文献   

11.
Topotaxial growth of Au(x) Ag(1-x) alloy nanowires (NWs) by postepitaxial deposition of Ag vapor on Au NWs and investigation of their plasmonic properties are reported. Ag vapor is supplied onto the epitaxially grown Au NWs, topotaxially turning them into Au(x) Ag(1-x) alloy NWs. The original geometries and alignments of the Au nanostructures are well preserved, while the composition of the alloy NWs is controlled by varying the Ag vapor supply time. The Au(0.5) Ag(0.5) NWs show high surface-enhanced Raman scattering (SERS) activity comparable to that of Ag NWs as well as highly increased oxidation resistance. The plasmon-active wavelength range of the Au(0.5) Ag(0.5) NW is significantly extended to the blue region compared to Au NWs. The Au(x) Ag(1-x) alloy NWs that have plasmonic activity in the blue region in addition to high corrosion resistance will make a superb material for practical plasmonic devices including SERS sensors and optical nanoantennas.  相似文献   

12.
Li K  Clime L  Tay L  Cui B  Geissler M  Veres T 《Analytical chemistry》2008,80(13):4945-4950
Arrays of Au nanowells (NWs) were fabricated by electron-beam lithography (EBL) and characterized by surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS). It is revealed that these Au NW arrays exhibit multiple SP resonances that can be tuned by adjusting the geometrical characteristics of the NWs. SERS activity of Au NWs was confirmed for a range of excitation wavelengths and a number of model compounds including rhodamine 6G (R6G), phthalazine, and single-stranded oligonucleotides. According to numerical simulations based on the discrete dipole approximation (DDA), SERS enhancement originates from high electromagnetic fields (hot spots) localized both inside and outside individual NWs. In addition, far-field intercoupling effects between NWs have been observed experimentally in arrays with subwavelength pitch sizes. We show that the SERS enhancement factors can also be tuned and optimized by adjusting the geometry of NWs.  相似文献   

13.
We examine the impact of shell content and the associated hole confinement on carrier transport in Ge-Si(x)Ge(1-x) core-shell nanowires (NWs). Using NWs with different Si(x)Ge(1-x) shell compositions (x = 0.5 and 0.7), we fabricate NW field-effect transistors (FETs) with highly doped source/drain and examine their characteristics dependence on shell content. The results demonstrate a 2-fold higher mobility at room temperature, and a 3-fold higher mobility at 77K in the NW FETs with higher (x = 0.7) Si shell content by comparison to those with lower (x = 0.5) Si shell content. Moreover, the carrier mobility shows a stronger temperature dependence in Ge-Si(x)Ge(1-x) core-shell NWs with high Si content, indicating a reduced charge impurity scattering. The results establish that carrier confinement plays a key role in realizing high mobility core-shell NW FETs.  相似文献   

14.
We report on the size effects of nano-patterned Si(1 1 1) substrates on the selective growth of GaN nanowires (NWs) using metal organic chemical vapor deposition. The nano-patterns on Si(1 1 1) substrates were fabricated by etching process of Au nano-droplets. The size of nano-patterns fabricated on Si(1 1 1) substrates were corresponding to size of Au nano-droplets, and the diameter of GaN NWs grown on nano-patterns was similar to the size of nano-pattern. Dense and well-oriented GaN NWs were grown on Si(1 1 1) substrates corresponding to the nano-patterns with an average diameter of about 50 nm. However, only a few GaN bulk grains, and mixed phase of a few NWs and bulk crystal of GaN were grown on the nano-patterned Si(1 1 1) having too small and large diameter, respectively, compare to the nano-patterns with diameter of 50 nm. Our results suggested that the selective growth of GaN NWs is strongly affected by the size of nano-patterns and its related mechanism.  相似文献   

15.
Amorphous SiO(x) nanowires (NWs) were synthesized using laser ablation of silicon-containing targets. The influence of various parameters such as target composition, substrate type, substrate temperature and carrier gas on the growth process was studied. The NWs were characterized using high resolution scanning and transmission electron microscopes (HRSEM and HRTEM) with their attachments: electron dispersive spectroscopy (EDS) and energy electron loss spectroscopy (EELS). A metal catalyst was found essential for the NW growth. A growth temperature higher than 1000?°C was necessary for the NW formation using an Ar-based carrier gas at 500?Torr. The use of Ar-5%H(2) instead of pure Ar resulted in a higher yield and longer NWs. Application of a diffusion barrier on top of the Si substrate guaranteed the availability of metal catalyst droplets on the surface, essential for the NW growth. Ni was found to be a better catalyst than Au in terms of the NW yield and length. Two alternative sequences for the evolution of the amorphous SiO(x) NWs were considered: (a)?the formation of Si NWs first and their complete oxidation afterwards, which seems to be doubtful, (b)?the direct formation of SiO(x) NWs, which is more likely to occur. The direct formation mechanism was proposed to advance in three stages: preferential adsorption of SiO(x) clusters on the catalyst surface first, a successive surface diffusion to the catalyst droplet lower hemisphere, and finally the formation and growth of the NW between the catalyst and the substrate.  相似文献   

16.
We report the growth of germanium nanowires (Ge NWs) with single-step temperature method via vapour-liquid-solid (VLS) mechanism in the low pressure chemical vapour deposition (CVD) reactor at 300 degrees C, 280 degrees C, and 260 degrees C. The catalyst used in our experiment was Au nanoparticles with equivalent thicknesses of 0.1 nm (average diameter approximately 3 nm), 0.3 nm (average diameter approximately 4 nm), 1 nm (average diameter approximately 6 nm), and 3 nm (average diameter approximately 14 nm). The Gibbs-Thomson effect was used to explain our experimental results. The Ge NWs grown at 300 degrees C tend to have tapered structure while the Ge NWs grown at 280 degrees C and 260 degrees C tend to have straight structure. Tapering was caused by the uncatalysed deposition of Ge atoms via CVD mechanism on the sidewalls of nanowire and significantly minimised at lower temperature. We observed that the growth at lower temperature yielded Ge NWs with smaller diameter and also observed that the diameter and length of Ge NWs increases with the size of Au nanoparticles for all growth temperatures. For the same size of Au nanoparticles, Ge NWs tend to be longer with a decrease in temperature. The Ge NWs grown at 260 degrees C from 0.1-nm-thick Au had diameter as small as approximately 3 nm, offering an opportunity to fabricate high-performance p-type ballistic Ge NW transistor, to realise nanowire solar cell with higher efficiency, and also to observe the quantum confinement effect.  相似文献   

17.
C.B. Li  K. Usami  H. Mizuta  S. Oda 《Thin solid films》2011,519(13):4174-4176
The growth of Ge-Si and Ge-Si nanowire (NW) heterostructures was demonstrated via chemical vapor deposition. Due to the influence of interface energy, differing topographies of the heterostructures were observed. On initially grown Ge NWs, numerous Si NW branches were grown near the tip due to Au migration. However, on initially grown Si NWs, high-density Ge nanodots were observed.  相似文献   

18.
Single crystalline silicon nanowires (SiNWs) were grown on Si(100) substrate using a gold (Au)-catalyzed vapor-liquid-solid (VLS) approach. The dependence of the growth time (i.e., the time of exposure to the Si source) on the density and surface evolution of the grown SiNWs is considered. It was observed that the density of grown SiNWs on Si substrate increased with increasing growth time. The highest density (approximately 1.1 x 10(6) mm(-2)) was reached at 4 hr. Upon further exposure to the Si source, we observed that the density was maintained for up to 9 hr. We suggest that the increased Si chemical potential in Au-Si droplets with increased growth time enhanced the SiNW growth rate at the interfaces between Au-Si droplets and SiNWs, and enhanced the transition of the NWs from the existing Au-Si droplets onto Si substrate. This allows the SiNW density to increase with increased growth time of up to 4 hr. Moreover, we examined the influence of the growth time on surface evolution including Au diffusion, facet and taper formation, and vapor-solid (VS) growth of the SiNWs. To explain the behavior of the grown SiNWs in the VLS process, we propose a combined model using the VLS and VS growth mechanisms.  相似文献   

19.
We report a model of nanowire (NW) mechanics that describes force vs displacement curves over the entire elastic range for diverse wire systems. Due to the clamped-wire measurement configuration, the force response in the linear elastic regime can be linear or nonlinear, depending on the system and the wire displacement. For Au NWs the response is essentially linear since yielding occurs prior to the onset of the inherent nonlinearity, while for Si NWs the force response is highly nonlinear, followed by brittle fracture. Since the method describes the entire range of elastic deformation, it unequivocally identifies the yield points in both of these materials.  相似文献   

20.
Shin JC  Kim KH  Yu KJ  Hu H  Yin L  Ning CZ  Rogers JA  Zuo JM  Li X 《Nano letters》2011,11(11):4831-4838
We report on the one-dimensional (1D) heteroepitaxial growth of In(x)Ga(1-x)As (x = 0.2-1) nanowires (NWs) on silicon (Si) substrates over almost the entire composition range using metalorganic chemical vapor deposition (MOCVD) without catalysts or masks. The epitaxial growth takes place spontaneously producing uniform, nontapered, high aspect ratio NW arrays with a density exceeding 1 × 10(8)/cm(2). NW diameter (~30-250 nm) is inversely proportional to the lattice mismatch between In(x)Ga(1-x)As and Si (~4-11%), and can be further tuned by MOCVD growth condition. Remarkably, no dislocations have been found in all composition In(x)Ga(1-x)As NWs, even though massive stacking faults and twin planes are present. Indium rich NWs show more zinc-blende and Ga-rich NWs exhibit dominantly wurtzite polytype, as confirmed by scanning transmission electron microscopy (STEM) and photoluminescence spectra. Solar cells fabricated using an n-type In(0.3)Ga(0.7)As NW array on a p-type Si(111) substrate with a ~ 2.2% area coverage, operates at an open circuit voltage, V(oc), and a short circuit current density, J(sc), of 0.37 V and 12.9 mA/cm(2), respectively. This work represents the first systematic report on direct 1D heteroepitaxy of ternary In(x)Ga(1-x)As NWs on silicon substrate in a wide composition/bandgap range that can be used for wafer-scale monolithic heterogeneous integration for high performance photovoltaics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号