首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
The microstructural and creep behavior of bulk 63SnPb37 and the Pb-free solder alloy Sn3.9Ag0.6Cu are reported and compared. The Sn3.9Ag0.6Cu alloy showed much lower absolute creep rates than 63SnPb37. The size and distribution of the intermetallic compound (IMC) coarsened with increasing creep temperature. A number of coarsened precipitates of Cu6Sn5 segregate around β-Sn grain boundaries. After creep at 80°C and 115°C. the β-Sn particles in the Sn3.9Ag0.6Cu alloy are strongly aligned at approximately 45° to the uniaxial tension, parallel to the maximum shear-stress planes. The powerlaw-defined stress exponent significantly increases with increasing stress in both the 63Sn37Pb and Sn3.9Ag0.6Cu alloys; therefore, the Dorn model is unsuitable for these materials over large stress and temperature ranges. Both sets of experimental data were successfully fit with the present power-law stress-dependent energy-barrier model and the Garofalo model. However, the application of the present power-law stress-dependent energy model resulted in a significantly lower estimated variance as compared to the Garofalo model.  相似文献   

2.
The present paper compares the creep and microstructural changes during creep behavior of bulk and thin cast forms of Sn3.9Ag0.6Cu. The processing parameters of the thin cast material were selected to result in a very fine microstructure analogous to what occurs in very small size solder electronic interconnections. We found that the thin cast material is less creep resistant than the bulk material. A comparison of Ag element maps between as-crept bulk and thin cast material shows that the relevant climb process occurs in a very different environment in the bulk material as compared to the thin cast material. In the bulk material, the relevant climb process occurs within a finely dispersed intermetallic compound (IMC) eutectic, which covers broad areas within the material. In the thin cast material, the relevant climb process occurs primarily in the beta-Sn grains that continuously surround isolated, coarse IMC particles. This resulted in the activation energy of the bulk material being larger than that for the thin cast material. Finally, it is important to note that the strength deficiency of the thin cast material is persistent—once the material is cast in thin cast form, it will remain weak in comparison to the bulk material. Therefore, using data obtained from bulk material samples for the construction of thermomechanical models of very small scale solder interconnections is likely to result in significant, intrinsic errors.  相似文献   

3.
The materials used in the present research are pure Sn metal and Sn-0.5% Cu, Sn-3.5%Ag, Sn-0.3%Sb, and Sn-3.5%Ag-0.5%Cu alloys. Effects of Cu, Ag and Sb on the creep-rupture strength of lead-free solder alloys have been investigated. Creep tests are performed at the stress and temperature range of 3 to 12 MPa and 378 to 403 K, respectively. A 3.5% addition of Ag had the largest contribution to the creep-rupture strength of Sn metal among the single addition of 0.5%Cu, 3.5%Ag, and 0.3%Sb. The combined addition of 3.5%Ag and 0.5%Cu makes the largest creep-rupture strength. The effects of these elements on the microstructure of the lead-free alloys are also investigated with optical microscope (OM) and transmission electron microscope (TEM) observations.  相似文献   

4.
Creep behavior of the lead-free Sn-5%Sb solder alloy was studied by long-time Vickers indentation testing at room temperature. Four different conditions of the material were examined. These were unhomogenized cast (UC), homogenized cast (HC), unhomogenized wrought (UW), and homogenized wrought (HW) conditions. Based on the steady-state power-law creep relationship, the stress exponents were determined through different methods of analysis, and in all cases, the calculated exponents were in good agreement. The stress exponent values of about 5 and 12, depending on the processing route of the material, are very close to those determined by room-temperature conventional creep testing of the same material reported in the literature. For the HW condition, the n value of about 5 together with a very fine grain size of 4.5 μm and a high volume fraction of second-phase particles of 8.6% may suggest that dislocation climb is the creep mechanism. For all other conditions with different grain sizes and second-phase volume fractions, however, the high n value of 12 implies that the operative creep mechanism is dislocation creep, which is independent of grain size.  相似文献   

5.
A unified creep plasticity theory with damage is presented for a lead-free solder. The damage is caused by microcracking both inside grains and along grain boundaries and increases with cyclic loading and creep. The Mura theory of microcrack nucleation was used to model the microcrack formation, while the percolation theory was used to characterize the damage such microcracking caused to the mechanical performance of the solder. The model is materials science based and is capable of application to solder joints of different sizes. It is also cast within the framework of phenomenological damage mechanics and is therefore convenient for implementation into commercially available computational software package. The theory was used to model isothermal experimental data for a eutectic solder 96.5Sn-3.5Ag, and good agreement was achieved.  相似文献   

6.
Properties of lead-free solder SnAgCu containing minute amounts of rare earth   总被引:10,自引:0,他引:10  
Because of excellent wetting and mechanical properties, SnAgCu solder alloys have been regarded as the most promising Pb-free substitutes for the SnPb solder. The Sn-3.8Ag-0.7Cu solder has garnered attention because of its creep resistance. However, under the drives of increasingly finer pitch design and severe service conditions, novel lead-free solders with higher creep performance may be needed. Adding a surface-active element to an alloy is an effective way to improve the high-temperature performance of the solder. The present work focuses on the effect of rare earth (RE) on the physical properties, spreading property, and mechanical properties of SnAgCu solder. Results show that the creep-rupture life of SnAgCu solder joints at room temperature could be notably increased by adding a minute amount of RE, up to 7 times more than that of SnAgCu solder joints when containing 1.0wt.%RE. The differential scanning calorimetry (DSC) curves indicated that the melting temperature of SnAgCu solder with RE increased a little, and no lower melting-temperature, eutectic endothermal peak appears on the DSC curve. The electrical conductivity of the solder decreased slightly, but it is still superior to the SnPb eutectic solder. Compared to that of SnPb solder, the coefficient of thermal expansion (CTE) of SnAgCu (RE) is closer to copper, which usually serves as the substrate of printed circuit boards (PCBs). It is assumed that this will comparably reduce the thermal stress derived from thermal mismatch between the solder and the PCBs. The RE had no apparent effect on the spreading property, but when RE added up to 1.0 wt.%, the spreading area of the solder on the copper substrate decreased, obviously, because of mass oxide. The RE improved the ultimate tensile strength little, but it increased the elongation up to 30%. However, as the content of the RE increases, the elongation of the solder gradually decreased to the level of SnAgCu when the RE exceeds 0.25 wt.%. Additionally, RE made the elastic modulus of SnAgCu solder increase, so the resistance to elastic deformation of the solder is enhanced. The microstructure of SnAgCuRE led to a refining trend as the RE content increased. The RE compounds appeared in the solder when RE was 0.1 wt.%. This deteriorates the mechanical properties of the solder. The fractography of the tensile specimen containing 0.1 wt.% indicated a superior ductility to Sn-3.8Ag-0.7Cu bulk solder. However, as RE is increased to 1.0 wt.%, the fractography shows less ductile characteristics, which is believed to serve as the reason that the elongation of solder degrades as RE increases. Summarily, the most suitable content of RE is within 0.05–0.5 wt.% and is inadvisable beyond 1.0 wt.%.  相似文献   

7.
Lead-free solders with excellent material properties and low cost are essential for the electronics industry. It has been proved that mechanical properties of SnAgCu alloys can be remarkably improved with a minute addition of rare earth (RE) elements. For comparison and optimization, three valuable solder candidates, Sn3.8Ag0.7Cu0.05RE, Sn3Ag0.5Cu0.05RE, and Sn2.9Ag1.2Cu0.05RE, were chosen due to the excellent properties of their own SnAgCu basic alloys. Wetting properties, melting temperature, bulk tensile properties, and joint tensile and shear properties were investigated. In addition, the microstructures of solder joints were observed and the effects of microstructure on mechanical properties were analyzed. Experimental results indicated that the tensile and shear strengths of solder joints were decreased from Sn3.8Ag0.7Cu0.05RE, Sn2.9Ag1.2Cu0.05RE, to Sn3Ag0.5Cu0.05RE, in order. Such difference in mechanical properties could be attributed to the influence of slightly coarse or strong Cu6Sn5 scallops in the reaction layer as well as superior eutectic network and large volume percentage of large primary intermetallic compounds (IMCs) inside the solder joints. It is also suggested that the size and volume percentage of large primary IMCs inside the solder be controlled. In addition, serration morphology was observed at the edge of large primary and eutectic IMCs in the three solder joints, which could be related to the content of Ag, Cu, and RE. The serration morphology was proved to be beneficial to mechanical properties theoretically. Furthermore, the three alloys investigated possessed similar wetting properties, melting temperatures, and bulk tensile properties.  相似文献   

8.
Lead-free solder joints in microelectronic applications frequently have microstructures comprising a dispersion of intermetallic particles in a Sn matrix. During thermomechanical cycling (TMC) of the solder joint, these particles undergo strain-enhanced coarsening, resulting in a continuously evolving, creep behavior. Because the extent of coarsening is dependent on the stress/strain state, which is dependent on the location within a joint, it is important that creep models used in joint-life prediction incorporate these effects. Here, an approach for incorporating the effect of in-situ second-phase particle coarsening in a dislocation-creep model applicable to lead-free solder alloys is proposed. The formulation, which can be expressed in a closed analytic form following some simplifications, incorporates the effects of both static- and strain-enhanced coarsening and accounts for the effects of inelastic-strain history and hydrostatic constraint. Predictions of coarsening based on the model agreed reasonably well with experimentally observed trends. Because of its simplicity, the microstructurally adaptive creep model proposed here can be easily incorporated in current finite-element codes for joint behavior simulation.  相似文献   

9.
Grain-boundary deformation is the primary failure mode observed in solder joints. Understanding the effects of alloy composition variations and cooling rates on microstructural stability and deformation processes will allow development of improved joints. The effects of these variables on grain-boundary character were investigated in a pure-tin ingot and a reflowed sample; ingots of Sn-3.5wt.%Ag and Sn-3.8wt.%Ag-0.7wt.%Cu; and solder balls with 1.63-wt.% or 3-wt.%Ag. The microstructure was characterized using orientation imaging microscopy (OIM). After aging (150°C for 200 h), the fine-grained polycrystalline microstructure in both pure-tin specimens grew considerably, revealing preferred misorientations and ledge formation at grain boundaries. Aging of the alloy ingots showed only slight grain growth caused by precipitate pinning. The solder balls showed similar phenomena. The role of alloying elements, cooling rate, and the anisotropy of the coefficient of thermal expansion (CTE) in tin on microstructural evolution, grain-boundary character, and properties of solder joints are discussed.  相似文献   

10.
Creep plays an important role in the mechanical behavior of solder alloys. This paper presents creep and strain rate sensitivity data for a Pb rich solder (92.5Pb, 2.5Ag, 5Sn-Indalloy 151) and compares it to the behavior of near eutectic 60Sn/40Pb solder. The high Pb alloy is used for exposures to higher temperatures than can be withstood by eutectic Sn/Pb solders. The Pb rich solder tested here is less strain rate sensitive than 60Sn/40Pb. There are also differences in the creep behavior.  相似文献   

11.
The rate-dependent mechanical properties of Sn3.8Ag0.7Cu (SAC387) Pb-free alloy and Sn-Pb eutectic alloy were investigated in this study under pure shearing and biaxial stress conditions with thin-walled specimens using a servo-controlled tension-torsion material testing system. The pure shearing tests were conducted at strain rates between 6.7 × 10−7 and 1.3 × 10−1/sec. In addition, axial tensile stresses were superimposed onto the shearing samples to examine the effects of biaxial stress conditions on the yielding and on post-yielding plastic flow of the solder alloys. Strain hardening is observed for the Pb-free alloy at all the tested strain rates, while strain softening happens with the Sn-Pb eutectic solder at low strain rates. Special tests were also conducted for sudden strain-rates changes and stress relaxation for the purpose to develop a viscoplastic model to simulate time-dependent multiaxial deformation and to assess damage and fatigue life of general solder interconnections.  相似文献   

12.
The near-eutectic Sn-3.5 wt.% Ag-0.7 wt.% Cu (Sn-3.5Ag-0.7Cu) alloy was doped with rare earth (RE) elements of primarily Ce and La of 0.05–0.25 wt.% to form Sn-3.5Ag-0.7Cu-xRE solder alloys. The aim of this research was to investigate the effect of the addition of RE elements on the microstructure and solderability of this alloy. Sn-3.5Ag-0.7Cu-xRE solders were soldered on copper coupons. The thickness of the intermetallic layer (IML) formed between the solder and Cu substrate just after soldering, as well as after thermal aging at 170°C up to 1000 h, was investigated. It was found that, due to the addition of the RE elements, the size of the Sn grains was reduced. In particular, the addition of 0.1wt.%RE to the Sn-3.5Ag-0.7Cu solder improved the wetting behavior. Besides, the IML growth during thermal aging was inhibited.  相似文献   

13.
The Sn-0.7%Cu alloy has been considered as a lead-free alternative to lead-tin alloys. In this work, various small amounts of rare earth (RE) elements, which are mainly Ce and La, have been added to the Sn-0.7%Cu alloy to form new solder alloys. It was found that the new alloys exhibit mechanical properties superior to that of the Sn-0.7%Cu alloy. In particular, the addition of up to 0.5% of RE elements is found to refine the effective grain size and provide a fine and uniform distribution of Cu6Sn5 in the solidified microstructure. Tensile, creep, and microhardness tests were conducted on the solder alloys. It was found that significant improvements of the tensile strength, microhardness, and creep resistance were obtained with RE element addition. Upon aging at 150°C for 20 h, the microstructure of Sn-Cu-RE is more stable than that of the Sn-Cu alloy.  相似文献   

14.
Solder joint interconnects are mechanical means of structural support for bridging the various electronic components and providing electrical contacts and a thermal path for heat dissipation. The functionality of the electronic device often relies on the structural integrity of the solder. The dimensional stability of solder joints is numerically predicted based on their mechanical properties. Algorithms to model the kinetics of dissolution and subsequent growth of intermetallic from the complete knowledge of a single history of time-temperature-reflow profile, by considering equivalent isothermal time intervals, have been developed. The information for dissolution is derived during the heating cycle of reflow and for the growth process from cooling curve of reflow profile. A simple and quick analysis tool to derive tensile stress-strain maps as a function of the reflow temperature of solder and strain rate has been developed by numerical program. The tensile properties are used in modeling thermal strain, thermal fatigue and to predict the overall fatigue life of solder joints. The numerical analysis of the tensile properties as affected by their composition and rate of testing, has been compiled in this paper. A numerical model using constitutive equation has been developed to evaluate the interfacial fatigue crack growth rate. The model can assess the effect of cooling rate, which depends on the level of strain energy release rate. Increasing cooling rate from normalizing to water-quenching, enhanced the fatigue resistance to interfacial crack growth by up to 50% at low strain energy release rate. The increased cooling rates enhanced the fatigue crack growth resistance by surface roughening at the interface of solder joint. This paper highlights salient features of process modeling. Interfacial intermetallic microstructure is affected by cooling rate and thereby affects the mechanical properties.  相似文献   

15.
Low-cycle fatigue (LCF) behavior of a lead-free Sn-3.5Ag-0.5Cu solder alloy was investigated at various combinations of strain ratio (R = −1, 0, and 0.5) and tensile hold time (0, 10, and 100 sec). Results showed that the LCF life of the given solder, at each given combination of testing conditions, could be individually described by a Coffin-Manson relationship. An increase of strain ratio from R=−1 to 0 and to 0.5 would cause a significant reduction of LCF life due to a mean strain effect instead of mean stress effect. LCF life was also markedly reduced when the hold time at tensile peak strain was increased from 0 to 100 sec, as a result of additional creep damage generated during LCF loading. With consideration of the effects of strain ratio and tensile hold time, a unified LCF lifetime model was proposed and did an excellent job in describing the LCF lives for all given testing conditions.  相似文献   

16.
A ZrO2 nanoparticle strengthened lead-free Sn-3,5Ag-ZrO2 solder was prepared by mechanically stirring ZrO2 nanoparticles into the molten melt of eutectic Sn-3.5Ag alloy. The influence of ZrO2 nanoparticles on the eutectic solidification process, in particular, the formation of Ag3Sn intermetallic compounds (IMCs) and the associated microstructure that forms and microhardness of Sn-3.5Ag solder, was systematically investigated. The addition of ZrO2 nanoparticles significantly refined the size of Ag3Sn IMCs due to the strong adsorption effect of the ZrO2 nanoparticles. The refined Ag3Sn IMCs increase the Vicker’s microhardness of the prepared Sn-3.5Ag-ZrO2 solder, which corresponds well with the prediction of the classic theory of dispersion strengthening.  相似文献   

17.
The effect of microstructure obtained by rapid or slow solidification and cooling of a Sn-3.5%Ag lead-free solder alloy on the creep strength has been investigated. The rapidly cooled alloy showed that the microstructure consisted of the primarily crystallized Sn phase and the quasi-eutectic phase, where fine Ag3Sn particles dispersed in the Sn matrix. In the slowly cooled alloy, large platelets of Ag3Sn were formed sparsely in the Sn matrix. A difference of about 2.5 orders of magnitude in the cooling rate translates to about 1.5 orders of magnitude in the creep-rupture time. Accordingly, fine particle dispersion of Ag3Sn is considered to be very beneficial for the restraining of creep deformation, that is, for the decreasing of creep rate of the Sn-3.5%Ag alloy, compared with the effect of large platelets of Ag3Sn sparsely formed in the Sn matrix.  相似文献   

18.
Stress-relaxation studies on eutectic Sn-Ag solder (Sn-3.5Ag in wt.%) joints were carried out at various temperatures after imposing different amounts and rates of simple shear strain. Stress-relaxation parameters were evaluated by subjecting geometrically realistic solder joints with a nominal joint thickness of ∼100 μm and a 1 mm × 1 mm solder-joint area. The peak shear stress during preloading and residual shear stress resulting from stress relaxation were higher at the low-temperature extremes than those at high-temperature extremes. Also, those values increased with increasing simple shear strain and the rate of simple shear strain imposed prior to the stress-relaxation events. The relaxation stress is insensitive to simple shear strain at 150°C, but at lower temperatures, a faster rate of simple shear strain causes a higher relaxed-stress value. The resulting deformation structures observed from the solder-joint side surfaces were also strongly affected by these parameters. At high temperature, grain-boundary sliding effects were commonly observed. At low temperature, intense shear bands dominated, and no grain-boundary sliding effects were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号