首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
炭纤维增强C/SiC双基体复合材料的制备及性能(英文)   总被引:2,自引:0,他引:2  
以针刺炭纤维整体毡为预制体,联用化学气相沉积法与熔融渗硅法制得炭纤维增强C/SiC双基体(C/C-SiC)复合材料;研究了C/C-Si材料的显微结构、力学性能和不同制动速度下的摩擦磨损性能及机理。结果表明:C/C-SiC材料具有适中的纤维/基体界面结合强度,弯曲强度和压缩强度分别达240MPa和210MPa,具有摩擦系数高(0.41~0.54),磨损小(0.02cm3/MJ),摩擦性能稳定等特点.随着制动速度提高,C/C-Si材料的摩擦磨损机制也随之变化:在低速制动条件下主要表现为磨粒磨损;中速时以黏着磨损为主;高速时以疲劳磨损和氧化磨损为主。  相似文献   

2.
C/C-SiC复合材料具有轻质、高模、高热导率、低热膨胀系数、高温抗氧化等优异性能,是很好的高温结构材料。从C纤维的涂层保护、C/C多孔体的优化设计、反应烧结渗硅3个方面概述了C/C-SiC复合材料的反应烧结工艺制备过程;综述了C/C-SiC复合材料在航空航天、空间光学系统、刹车制动等领域的相关应用进展;展望了C/C-SiC复合材料制备工艺和应用方面的发展趋势。  相似文献   

3.
综述了熔融渗硅法制备C/C-SiC复合材料的国内外研究和应用现状,重点分析了碳纤维预制体和C/C多孔体的制备,以及熔融渗硅过程对C/C-SiC复合材料性能和结构的影响,介绍了C/C-SiC复合材料作为热结构和摩擦材料在航空航天和先进摩擦制动系统中的应用,提出了C/C-SiC复合材料制备过程中存在的问题和今后研究的重点.  相似文献   

4.
缪花明  刘荣军  王衍飞  李俊生  李端  万帆 《材料工程》1990,(收录汇总):142-148
采用不同面密度和丝束大小的碳纤维布,通过不同z向缝合方式编织了两种碳布叠层结构的碳纤维预制体,再经化学气相渗透法(chemical vapor infiltration,CVI)与气相渗硅法(gaseous silicon infiltration,GSI)联用制备了C/C-SiC复合材料。研究了碳纤维预制体结构对CVI-GSI C/C-SiC复合材料微观结构与力学性能的影响。结果表明,由纤维体积分数与C/C素坯密度都相同的预制体所制备的两种复合材料的密度、各相组成、结构与性能均大不相同。较小的碳纤维丝束(1K)和碳布面密度(92 g/m^(2)),以及锁式缝合留下的较大孔隙为GSI反应中Si蒸气的渗透提供了更加充足的通道,最终制备的T1复合材料孔隙率低、结构均匀、性能更高,其弯曲强度、模量和断裂韧度分别为300.97 MPa,51.75 GPa,11.32 MPa·m^(1/2)。初始预制体结构和C/C中间体结构的综合调控是CVI-GSI联用工艺制备高性能C/C-SiC复合材料的关键。  相似文献   

5.
采用不同面密度和丝束大小的碳纤维布,通过不同z向缝合方式编织了两种碳布叠层结构的碳纤维预制体,再经化学气相渗透法(chemical vapor infiltration, CVI)与气相渗硅法(gaseous silicon infiltration, GSI)联用制备了C/C-SiC复合材料。研究了碳纤维预制体结构对CVI-GSI C/C-SiC复合材料微观结构与力学性能的影响。结果表明,由纤维体积分数与C/C素坯密度都相同的预制体所制备的两种复合材料的密度、各相组成、结构与性能均大不相同。较小的碳纤维丝束(1K)和碳布面密度(92 g/m2),以及锁式缝合留下的较大孔隙为GSI反应中Si蒸气的渗透提供了更加充足的通道,最终制备的T1复合材料孔隙率低、结构均匀、性能更高,其弯曲强度、模量和断裂韧度分别为300.97 MPa, 51.75 GPa, 11.32 MPa·m1/2。初始预制体结构和C/C中间体结构的综合调控是CVI-GSI联用工艺制备高性能C/C-SiC复合材料的关键。  相似文献   

6.
三维针刺碳毡经化学气相渗透(Chemical Vapor Infiltration,CVI)增密制备C/C素坯,通过气相渗硅(Gaseous Silicon Infiltration,GSI)制备C/C-SiC复合材料。研究素坯密度与CVI C层厚度及素坯孔隙率的变化规律,并分析素坯密度对C/C-SiC复合材料力学性能、热学性能的影响。结果表明:随着素坯密度增大,CVI C层变厚,孔隙率减小;C/C-SiC复合材料中残C量随之增大,残余Si量随之减小,SiC先保持较高含量(体积分数约40%),随后迅速降低,C/C-SiC复合材料密度逐渐减小,力学性能先增大后减小,而热导率及热膨胀系数降低至平稳。当素坯密度为1.085g/cm3时,复合材料力学性能最好,弯曲强度可达308.31MPa,断裂韧度为11.36MPa·m1/2。研究发现:素坯孔隙率较大时,渗硅通道足够,残余硅多,且CVI C层较薄,纤维硅蚀严重,C/C-SiC复合材料力学性能低;素坯孔隙率较小时,渗硅通道很快阻塞,Si和SiC含量少,而闭孔大且多,C/C-SiC复合材料力学性能也不高。  相似文献   

7.
吴玲 《材料导报》2014,28(13):52-55,60
C/C-SiC复合材料是高速制动材料的优良候选材料。摩擦磨损性能是衡量制动材料的主要性能指标,也是制约材料进一步应用的主要因素。主要从材料微观结构和成分以及工况条件对C/C-SiC复合材料的摩擦磨损性能的影响两方面阐述了C/C-SiC复合材料摩擦磨损性能的研究现状;分析了影响C/C-SiC复合材料摩擦磨损性能的主要材料因素和工况条件;讨论了各自影响机制;并提出了进一步提高C/C-SiC复合材料摩擦磨损性能和使役安全所需解决的问题。  相似文献   

8.
通过观察C/C-SiC复合材料组元分布的扫描电子显微镜(SEM)照片 , 获得了C/C-SiC复合材料化学气相渗透(CVI)制备过程中产生孔隙和微裂纹的几何信息。在此基础上 , 建立了包含孔隙和微裂纹的C/C-SiC微结构有限元模型 , 并利用均匀化等效计算方法预测了平纹编织C/C-SiC复合材料的模量。针对CVI沉积方式制备的2组不同的C/C-SiC复合材料 , 实验测试与等效计算结果表明 : 基于 SEM照片建立的C/C-SiC纤维束和复合材料微结构有限元模型 , 能够反映CVI工艺制备C/C-SiC中孔隙和微裂纹的分布状况; 计算结果与实验数据有良好的一致性 , 数值计算可有效预测C/C-SiC编织复合材料的模量。   相似文献   

9.
10.
高温热处理对C/C-SiC复合材料制备与力学性能的影响   总被引:5,自引:5,他引:5  
以针刺整体炭毡为坯体,采用树脂浸渍和化学气相沉积混合法制备C/C多孔体,然后熔硅浸渗制得C/C-S iC复合材料;研究了C/C多孔体的高温热处理对C/C-S iC复合材料密度、孔隙度、力学性能及断裂方式的影响。结果表明:炭涂层进行高温热处理可改变复合材料的弯曲断裂方式,使其具有一定的“假塑性”,弯曲强度下降约16%,压缩强度提高约20%,硬度增加;C/C多孔体的最终高温热处理可打开孔隙,有利于液S i的渗入,制备出密度较高(>2.0 g.cm-3)、开孔率较小(<4%)的复合材料,但导致其力学性能下降,基本上不影响其断裂方式。  相似文献   

11.
Ceramic Matrix Composites (CMC), based on reinforcements of carbon fibres and matrices of silicon carbide, show superior tribological properties in comparison to grey cast iron or carbon/carbon. In combination with their low density, high thermal shock resistance and good abrasive resistance, these Si‐infiltrated carbon/carbon materials, called C/SiC or C/C‐SiC composites, are promising candidates for advanced friction systems. Generally, the carbon fibres lead to an improved damage tolerance in comparison to monolithic SiC, whereas the silicon carbide matrix improves the wear resistance compared to carbon/carbon. In combination with new design approaches cost‐efficient manufacturing processes have been developed and have lead to successfully tested prototypes of brake pads and disks, especially for passenger cars and emergency brake systems.  相似文献   

12.
采用熔融硅液相浸渍法制备了C/C-SiC复合材料,反应生成的SiC主要分布在层间孔和束间孔碳基体表面,少量分布在束内孔.1600℃渗硅2 h,硅化深度约为2~4 μm.由于液态硅与碳之间的润湿性很好,在碳基体表面形成了连续的SiC层,局部有粗大的多面碳化硅颗粒生成;讨论了细晶粒连续SiC层和SiC粗晶粒形成机理.由于SiC的加入,材料的抗氧化性能得到明显改善.  相似文献   

13.
C/C-SiC复合材料熔融渗硅制备工艺   总被引:2,自引:0,他引:2  
C/C-SiC复合材料具有许多优异的性能,如高比强度、高比模量、优良的高温性能、高热导率以及低热膨胀系数等.与其它制备工艺相比,采用熔融渗硅法制备C/C-SiC复合材料的工艺具有操作简单、周期短、成本低等优点.综述了目前熔融渗硅法制备C/C-SiC复合材料的研究状况.  相似文献   

14.
快速化学气相渗积制备碳/碳复合材料的工艺研究   总被引:3,自引:0,他引:3  
研究了一种快速制备碳/碳复合材料的新工艺-自加热化学气相渗积法(SHCVI)。该工艺沉积时间10h,复合材料密度可达到1.63g/cm^3。通过测定材料的体积密度及力学性能,分析了温度制度、反应气体流量、气体压力对复合材料致密度以及复合材料力学性能的影响。采用扫描电镜观察复合材料断口形貌,分析其增韧机制。  相似文献   

15.
采用化学气相渗透法(CVI)制备了二维碳纤维增强碳化硅(C/SiC)陶瓷基复合材料. 基于耦合应力等效模拟系统的开发, 采用摩擦扭矩的变化表征传动过程的摩擦磨损性能. 研究了以传动为背景的高载荷、低转速摩擦磨损行为及机理. C/SiC复合材料以其较低的摩擦扭矩、低的磨损率特别是在高载荷下的较小变形验证了良好的耐磨特性以及承载能力. 相同条件下其磨损率只有Ti合金的1/10~1/20. 低转速下磨损机理以磨粒磨损为主, 高载荷没有引起表面热裂纹.  相似文献   

16.
以液相渗硅工艺为手段制备了C/C-SiC复合材料。分别采用MMW-1A与MM-1000型试验机对复合材料的摩擦磨损性能进行了研究。结果表明: 在实验室条件下, 当压力恒定在0.48 MPa时, 转速对复合材料的摩擦磨损的性能影响甚微, 摩擦系数为0.15~0.16, 且磨损率接近; 当转速恒定在0.3 m/s时, 不同压力条件下的摩擦系数相近, 为0.13~0.15, 但磨损率存在较大差异, 材料磨损以磨粒磨损为主。在近工况条件下, C/C-SiC复合材料的摩擦系数达到0.50, 磨损率达到5.95 mg/次, 摩擦曲线表现为典型的马鞍形曲线, 试验前期材料磨损主要表现为磨粒磨损, 试验后期为粘着磨损。  相似文献   

17.
直热式化学气相渗C/C复合材料研究   总被引:1,自引:1,他引:0  
采用直热式化学气相渗工艺制备了 C/ C复合材料 ,以 2 D无纬织物和碳毡为纤维预制体 ,液化石油气为碳源气体 ,在常压下经 2 5 h左右沉积得到整体密度分别为 1.6 0 g· cm- 3和 1.78g· cm- 3的 C/ C复合材料。观察了材料的微观结构 ,测试了材料的力学性能和热物理性能。结果表明 ,直热式化学气相渗制备的 C/ C复合材料具有良好的力学性能和热物理性能 ,是一种较为理想的制备 C/ C复合材料的新工艺。  相似文献   

18.
工艺因素对C/C复合材料ICVI致密化的影响   总被引:2,自引:0,他引:2  
以2D针刺碳毡为预制体、丙烯为前驱气体、氮气为稀释气体,在常压条件下研究了沉积温度、滞留时间和丙烯分压等工艺因素对致密化速度的影响。结果表明,三个工艺参数协同作用,对致密化具有相似的影响:参数取值较高时初期致密化速度也较快,结果导致预制体表层气孔的过早填充,不利于进一步的沉积,反之,则致密化速度较慢,但有利于预制体内部的沉积。  相似文献   

19.
采用密度为1.0g/cm~3的C/C素坯,联合化学气相渗透(CVI)和气相渗硅(GSI)2种工艺制备C/C-SiC复合材料,研究CVI C/C-SiC复合材料中间体的密度对CVI-GSI C/C-SiC复合材料物相组成、微观结构及力学性能的影响。结果表明:随着CVI C/C-SiC复合材料中间体密度的增大,CVI-GSI C/C-SiC复合材料C含量增多,残余Si含量减少,SiC含量先增多后减少,CVI-GSI C/C-SiC复合材料的密度先增大后减小;随着CVI C/C-SiC复合材料中间体的密度由1.27g/cm~3增加到1.63g/cm~3时,得到的CVI-GSI C/C-SiC复合材料的力学性能先升高后降低。当CVI C/C-SiC复合材料密度为1.42g/cm~3时,制得的CVI-GSI C/C-SiC复合材料力学性能最好,其弯曲强度为247.50MPa,弯曲模量为25.63GPa,断裂韧度为10.08MPa·m~(1/2)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号