首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A commercial quadrupole/time-of-flight (QqTOF) tandem mass spectrometer has been adapted for ion/ion reaction studies. To enable mutual storage of oppositely charged ions in a linear ion trap, the oscillating quadrupole field of the second quadrupole of the system (Q2) serves to store ions in the radial dimension while auxiliary radio frequency is superposed on the end lenses of Q2 during the reaction period to create barriers in the axial dimension. A pulsed dual electrospray (ESI) source is directly coupled to the instrument interface for the purpose of proton transfer reactions. Singly and doubly charged protein ions as high in mass as 66 kDa are readily formed and observed after proton-transfer reactions. For the modified instrument, the mass resolving power is approximately 8000 for a wide m/z range, and the mass accuracy is approximately 20 ppm for external calibration and approximately 5 ppm for internal calibration after ion/ion reactions. Parallel ion parking is demonstrated with a six-component protein mixture, which shows the potential application of reducing spectral complexity and concentrating certain charge states. The current system has high flexibility with respect to defining MS(n) experiments involving collision-induced dissociation (CID) and ion/ion reactions. Protein precursor and CID product masses can be determined with good accuracy, providing an attractive platform for top-down proteomics. Electron transfer dissociation ion/ion reactions are implemented by using a pulsed nano-ESI/atmospheric pressure chemical ionization dual source for ionization. The reaction between protonated peptide ions and radical anions of 1,3-dinitrobenzene formed exclusively c- and z-type fragment ions.  相似文献   

2.
Liquid chromatography with time-of-flight mass spectrometry (TOF-MS) and quadrupole-time-of-flight (Q-TOF) mass spectrometry/mass spectrometry (MS/MS) were used for the accurate mass analysis of sulfadimethoxine in pond water of a fish hatchery. Sulfadimethoxine is the most important sulfa antimicrobial used in aquaculture to treat bacterial disease in a wide variety of fish. Because correct identification is essential to environmental monitoring of antimicrobial pharmaceuticals, accurate mass analyses (TOF and Q-TOF-MS/MS) were compared to nominal mass measurement (quadrupole ion trap). It was known that all six members of the sulfa antimicrobial family gave a common 6-sulfanilamido ion at a nominal mass of m/z 156; thus, this ion was the focus of TOF confirmation (exact mass 156.0119 u) along with the protonated molecule (exact mass 311.0814 u). In the process of accurate mass confirmation of the 156 m/z fragment ion, a second isobaric ion (exact mass m/z 156.0773), was discovered at the same nominal mass, which was not differentiated by quadrupole ion trap. The structure was assigned as 2-4-dimethoxypyridine and is exactly the other protonated half of the sulfadimethoxine molecule. This discovery led to the subsequent use of Q-TOF-MS/MS and high-resolution identification of five other important ion fragments for the identification of sulfadimethoxine in pond water at environmental concentrations. The caveats of using low-resolution mass spectrometry without MS/MS for environmental monitoring are discussed in the light of high profile monitoring of sulfa antimicrobial pharmaceuticals in the aquatic environment.  相似文献   

3.
Methods for bidirectional ion transmission between distinct quadrupole arrays were developed on a quadrupole/time-of-flight tandem mass spectrometer (QqTOF) containing three quadrupoles (ion guide Q0, mass filter Q1, and collision cell Q2) and a reflectron TOF analyzer, for the purpose of implementing multistage ion/ion reaction experiments. The transfer efficiency, defined as the percentage of ions detected after two transfer steps relative to the initial ion abundance, was found to be about 60% between Q2 and Q0 (with passage through the intermediate array (Q1)) and almost 100% between Q2 and Q1. Efficient ion transfer enabled new means for executing MSn experiments on an instrument of this type by operating Q1 in rf/dc mode for performing multiple steps of precursor/product ion isolation while passing ions through Q1 or trapping ions in Q1. In the latter case, the Q1 functioned as a linear ion trap. Either collision induced dissociation (CID) or ion/ion reactions can be conducted in between each stage of mass analysis. MS3 or MS4 experiments were developed to illustrate the charge increase of peptide ions via two steps of charge inversion ion/ion reactions, CID of electron-transfer dissociation (ETD) products and CID of a metal-peptide complex formed from ion/ion reactions.  相似文献   

4.
The beam-type and ion trap collision-induced dissociation (CID) behaviors of protonated bovine ubiquitin ions were studied for charge states ranging from +6 to +12 on a modified triple quadrupole/linear ion trap tandem mass spectrometer. Both beam-type CID and ion trap CID were conducted in a high-pressure linear ion trap, followed by proton-transfer ion/ion reactions to reduce the charge states of product ions mostly to +1. The product ions observed under each activation condition were predominantly b- and y-type ions. Fragmentation patterns showed a much stronger dependence on parent ion charge state with ion trap CID than with beam-type CID using nitrogen as the collision gas, with preferential cleavages C-terminal to aspartic acid at relatively low charge states, nonspecific fragmentation at moderate charge states, and favored cleavages N-terminal to proline residues at high charge states. In the beam-type CID case, extensive cleavage along the protein backbone was noted, which yielded richer sequence information (77% of backbone amide bond cleavages) than did ion trap CID (52% of backbone amide bond cleavages). Collision gas identity and collision energy were also evaluated in terms of their effects on the beam-type CID spectrum. The use of helium as collision gas, as opposed to nitrogen, resulted in CID behavior that was sensitive to changes in collision energy. At low collision energies, the beam-type CID data resembled the ion trap CID data with preferential cleavages predominant, while at high collision energies, nonspecific fragmentation was observed with increased contributions from sequential fragmentation.  相似文献   

5.
Ion mobility/time-of-flight mass spectrometry techniques have been used to examine distributions of fragment ions generated by collision-induced dissociation (CID) in a quadrupole ion trap. The mobility-based separation step prior to mass-to-charge (m/z) analysis reduces spectral congestion and provides information that complements m/z-based assignments of peaks. The approach is demonstrated by examining fragmentation patterns of insulin chain B (a 30-residue peptide), and ubiquitin (a protein containing 76 amino acids). Some fragments of ubiquitin show evidence for multiple stable conformations.  相似文献   

6.
ESI (electrospray ionization) MS and tandem mass spectrometry (MS/MS) were used for the analysis of single nucleotide polymorphisms (SNPs) and more complex genetic variations. Double-stranded (ds) PCR products were studied. PCR products of the proline [5'-x(G17)-x(C38)x-3'] and arginine variants [(5'-x(Gl7)-x(G38)x-3'] of the p53 gene are distinguished by an SNP (cytosine or guanine) and were discriminated using both quadrupole and quadrupole ion trap MS analysis. A 69 bp arginine mutant PCR product [5'-x(C17)-x(G38)x-3'] with a negating switch has the same mass as the proline variant but was readily distinguishable on ion trap MS/MS analysis; fragments containing the mutation site, but not the polymorphism, were identified. The 69 bp PCR products were restriction-enzyme-digested, to create 43 bp fragments. ESI quadrupole ion trap MS/MS analysis of the 43 bp product-ion spectra readily demonstrated both polymorphism and negating switch sites. MS and MS/MS are powerful and complementary techniques for analysis of DNA. MS can readily distinguish SNPs but MS/MS is required to differentiate isomeric PCR products (same nucleotide composition but different sequence).  相似文献   

7.
An ion trap/ion mobility/quadrupole/time-of-flight mass spectrometer has been developed for the analysis of peptide mixtures. In this approach, a mixture of peptides is electrosprayed into the gas phase. The mixture of ions that is created is accumulated in an ion trap and periodically injected into a drift tube where ions separate according to differences in gas-phase ion mobilities. Upon exiting the drift tube, ions enter a quadrupole mass filter where a specific mass-to-charge (m/z) ratio can be selected prior to collisional activation in an octopole collision cell. Parent and fragment ions that exit the collision cell are analyzed using a reflectron geometry time-of-flight mass spectrometer. The overall configuration allows different species to be selected according to their mobilities and m/z ratios prior to collision-induced dissociation and final MS analysis. A key parameter in these studies is the pressure of the target gas in the collision cell. Above a critical pressure, the well-defined mobility separation degrades. The approach is demonstrated by examining a mixture of tryptic digest peptides of ubiquitin.  相似文献   

8.
Constant neutral loss (CNL) and precursor ion (PI) scan have been widely used for the in vitro screening of glutathione conjugates derived from reactive metabolites, but these two methods are only applicable to triple quadrupole or hybrid triple quadrupole mass spectrometers. Additionally, the success of CNL and PI scanning largely depends on structure and CID fragmentation pathways of GSH conjugates. In the present study, a highly efficient methodology has been developed as an alternative approach for high-throughput screening and structural characterization of reactive metabolites using the linear ion trap mass spectrometer. In microsomal incubations, a mixture of glutathione [GSH, gamma-glutamyl-cystein-glycin] and the stable-isotope labeled compound [GSX, gamma-glutamyl-cystein-glycin-(13)C2-(15)N] was used to trap reactive metabolites, resulting in formation of both labeled and unlabeled conjugates at a given isotopic ratio. A mass difference of 3.0 Da between the natural and labeled GSH conjugate (mass tag) at a fixed isotopic ratio constitutes a unique mass pattern that can selectively trigger the data-dependent MS(2) scan of both isotopic partner ions, respectively. In order to eliminate the response bias of GSH adducts in the positive and negative mode, a polarity switch is executed between the mass tag-triggered data dependent MS(2) scan, and thus ESI- and ESI+ MS(2) spectra of both labeled and nonlabeled GSH conjugates are obtained in a single LC-MS run. Unambiguous identification of glutathione adducts was readily achieved with great confidence by MS(2) spectra of both labeled and unlabeled conjugates. Reliability of this method was vigorously validated using several model compounds that are known to form reactive metabolites. This approach is not based on the appearance of a particular product ion such as MH(+) - 129 and anion at m/z 272, whose formation can be structure-dependent and sensitive to the collision energy level; therefore, the present method can be suitable for unbiased screening of any reactive metabolites, regardless of their CID fragmentation pathways. Additionally, this methodology can potentially be applied to triple quadrupole or hybrid triple quadrupole mass spectrometers.  相似文献   

9.
This article describes the strange behavior of the widely used herbicide metolachlor under chemical ionization conditions in a hybrid source ion trap mass spectrometer in gas chromatography/mass spectrometry (GC/MS) coupling. With the use of ammonia as the reagent gas, metolachlor provides a chlorinated ion at m/z 295/297, almost as abundant as the protonated molecule at m/z 284/286, which cannot be isolated to perform tandem mass spectrometry (MS(n)) experiments. Curiously, this ion at m/z = M + 12 is not observed for the herbicides acetochlor and alachlor, which present very similar chemical structures. The chemical structure of the m/z 295/297 ions and the explanation of the observed phenomenon based on the metastable behavior of these ions were elucidated on the basis of experiments including isotopic labeling and modifications of the operating conditions of the ion trap mass spectrometer. This work allows one to give new recommendations for an optimized use of hybrid source ion trap mass spectrometers.  相似文献   

10.
While investigating the in-source CID fragmentation of nonsteroidal antiinflammatory drugs (NSAIDs), it was noticed that the same fragment ion (nominal mass) formed in either positive or negative ion electrospray for a suite of NSAIDs. For example, ibuprofen with a molecular mass of 206, fragments to the m/z 161 ion in negative ion from its deprotonated molecule (m/z 205, [M - H]-) and fragments to the m/z 161 ion in positive ion from its protonated molecule (m/z 207, [M + H]+). This fragment ion was euphemistically called a "twin ion"because of the same nominal mass despite opposite charge. The CID fragmentation of the twin ions was confirmed also by LC/MS/MS ion trap. Accurate mass measurements in negative ion show that the loss was due to CO2 (measured loss of 43.9897 atomic mass units (u) versus calculated loss of 43.9898 u for N = 10) and in positive ion the loss is due to HCOOH (measured loss of 46.0048 u versus calculated loss of 46.0055 u, N = 10). It was realized that, in fact, the ions were not "identical mass twins of opposite charge" but separated in accurate mass by two electrons. The accurate mass measurement by liquid chromatography/time-of-flight-mass spectrometry (LC/TOF-MS) can distinguish between the two fragment ions of ibuprofen (161.13362 +/- 0.00019 and 161.13243 +/- 0.00014 for N = 20). This experiment was repeated for two other NSAIDs, and the mass of an electron was measured as the difference between the twin ions, which was 0.00062 u +/- 14.8% relative standard deviation (N = 20 analyses). Thus, the use of continuous calibration makes it possible to measure the mass of an electron within one significant figure using the NSAID solution. This result shows the importance of including electron mass in accurate mass measurements and the value of a benchmark test for LC/TOF-MS mass accuracy.  相似文献   

11.
Thermally assisted collision-induced dissociation (TA-CID) provides increased dissociation in comparison with CID performed at ambient temperature in a quadrupole ion trap mass spectrometer. Heating the bath/collision gas during CID increases the initial internal energy of the ions and reduces the collisional cooling rate. Thus, using the same CID parameters, the parent ion can be activated to higher levels of internal energy, increasing the efficiency of dissociation and the number of dissociation pathways. The increase in the number of dissociation pathways can provide additional structural information. A consequence of the increase in initial internal energy is the ability to use less power to effect collisional activation. This allows lower q(z) values to be used and, thus, a greater mass range of product ions to be observed. TA-CID alleviates the problems associated with traditional CID and results in more available information than traditional CID.  相似文献   

12.
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a central tool for proteomic analysis, yet the singly protonated tryptic peptide ions produced by MALDI are significantly more difficult to dissociate for tandem mass spectrometry (MS/MS) than the corresponding multiply protonated ions. In order to overcome this limitation, current proteomic approaches using MALDI-MS/MS involve high-energy collision-induced dissociation (CID). Unfortunately, the use of high-energy CID complicates product ion spectra with a significant proportion of irrelevant fragments while also reducing mass accuracy and mass resolution. In order to address the lack of a high-resolution, high mass accuracy MALDI-MS/MS platform for proteomics, Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and a recently developed MS/MS technique termed CIRCA (for combination of infrared and collisional activation) have been applied to proteomic analysis. Here, CIRCA is shown to be suitable for dissociating singly protonated tryptic peptides, providing greater sequence coverage than either CID or infrared multiphoton dissociation (IRMPD) alone. Furthermore, the CIRCA fragmentation spectra are of sufficient quality to allow protein identification based on the MS/MS spectra alone or in concert with the peptide mass fingerprint (PMF). This is accomplished without compromising mass accuracy or mass resolution. As a result, CIRCA serves to enable MALDI-FTICR-MS/MS for high-performance proteomics experiments.  相似文献   

13.
The collision-induced dissociation (CID) of a range of deprotonated fatty acid standards was studied using linear ion trap mass spectrometry. Neutral losses of 78, 98, and 136 Da were consistently observed for fatty acids with five or more double bonds. Comparison of the MS/MS spectra of docosahexaenoic acid (DHA) and universally (13)C-labeled DHA allowed the molecular formulas for these neutral losses to be determined as C(6)H(6), C(5)H(6)O(2), and C(8)H(8)O(2). Knowledge of fatty acid fragmentation processes was then applied to identify fatty acids from a sea anemone, Aiptasia pulchella, and dinoflagellate symbiont, Symbiodinium sp. extract. Using HPLC-MS, fatty acids were separated and analyzed by tandem mass spectrometry in data-dependent acquisition mode. Neutral loss chromatograms for 78, 98, and 136 Da allowed the identification of long-chain fatty acids with five or more double bonds. On the basis of precursor ion m/z ratios, chain length and degree of unsaturation for these fatty acids were determined. The application of this technique to an Aiptasia sp.-Symbiodinium sp. lipid extract enabled the identification of the unusual, long-chain fatty acids 24:6, 26:6, 26:7, 28:7, and 28:8 during a single 40 min HPLC-MS analysis.  相似文献   

14.
A triple quadrupole mass spectrometer capable of ion trapping experiments has been adapted for ion/ion reaction studies. The instrument is based on a commercially available linear ion trap (LIT) tandem mass spectrometer (i.e., an MDS SCIEX 2000 Q TRAP) that has been modified by mounting an atmospheric sampling glow discharge ionization (ASGDI) source to the side of the vacuum manifold for production of singly charged anions. The ASGDI source is located line of sight to the side of the third quadrupole of the triple quadrupole assembly (Q3). Anions are focused into the side of the rod array (i.e., anion injection occurs orthogonal to the normal ion flight path). A transmission mode method to perform ion/ion reactions has been developed whereby positive ions are transmitted through the pressurized collision quadrupole (Q2) while anions are stored in Q2. The Q2 LIT is used to trap negative ions whereas the Q3 LIT is used to accumulate positive ions transmitted from Q2. Anions are injected to Q3 and transferred to Q2, where they are stored and collisionally cooled. Multiply charged protein/peptide ions, formed by electrospray, are then mass selected by the first quadrupole assembly (Q1) operated in the rf/dc mode and injected into Q2. The positive ions, including the residual precursor ions and the product ions arising from ion/ion proton-transfer reactions, are accumulated in Q3 until they are analyzed via mass-selective axial ejection for mass analysis. The parameters that affect ion/ion reactions are discussed, including pressure, nature of the gas in Q2, and operation of Q2 as a linear accelerator. Ion/ion reactions in this mode can be readily utilized to separate ions with the same m/z but largely different mass and charge, e.g., +1 bradykinin and +16 myoglobin, in the gas phase.  相似文献   

15.
We describe the data-dependent analysis of protein phosphorylation using rapid-acquisition nano-LC-linear quadrupole ion trap Fourier transform ion cyclotron resonance mass spectrometry (nano-LC-FTMS). The accurate m/z values of singly, doubly, and triply charged species calculated from the theoretical protonated masses of peptides phosphorylated at all Ser, Thr, or Tyr residues of the human checkpoint 2 (Chk2) protein kinase were used for selected ion extraction and chromatographic analysis. Using a kinase-inactive Chk2 mutant as a control, accurate mass measurements from FTMS and collision-induced dissociation spectra, 11 novel Chk2 autophosphorylation sites were assigned. Additionally, the presence of additional Chk2 phosphorylation sites in two unique peptides was deduced from accurate mass measurements. Selected ion chromatograms of all Chk2 phosphopeptides gave single peaks except in three cases in which two closely eluting species were observed. These pairs of phosphopeptides were determined to be positional isomers from MS/MS analysis. In this study, it was also found that ions due to the neutral loss of phosphoric acid from the parent peptide ion were not prominent in 18 of 36 MS/MS spectra of O-linked Chk2 phosphopeptides. Thus, accurate mass-driven analysis and rapid parallel MS/MS acquisition is a useful method for the discovery of new phosphorylation sites that is independent of the signature losses from phosphorylated amino acid residues.  相似文献   

16.
The formation of acrylamide was measured in real time during thermal treatment (120-170 degrees C) of potato as well as in Maillard model systems composed of asparagine and reducing sugars, such as fructose and glucose. This was achieved by on-line monitoring of acrylamide released into the headspace of the samples using proton transfer reaction mass spectrometry (PTR-MS). Unambiguous identification of acrylamide by PTR-MS was accomplished by gas chromatography coupled simultaneously to electron-impact MS and PTR-MS. The PTR-MS ion signal at m/z 72 was shown to be exclusively due to protonated acrylamide obtained without fragmentation. In model Maillard systems, the formation of acrylamide from asparagine was favored with increasing temperature and preferably in the presence of fructose. Maximum signal intensities in the headspace were obtained after approximately 2 min at 170 degrees C, whereas 6-7 min was required at 150 degrees C. Similarly, the level of acrylamide released into the headspace during thermal treatment of potato was positively correlated to temperature.  相似文献   

17.
Electron ionization (EI) tandem mass spectrometry (MS/MS) allowed the fast determination of the total concentration of short- and medium-chained polychlorinated n-alkanes (PCAs) in biota. EI fragment ions common to all PCAs could be identified. Collision-induced dissociations (CIDs) were carried out by ion trap and triple quadrupole EI-MS/MS. CIDs of m/z 91 --> 53 (limit of detection (LOD) 0.15 ng/microL), 102 --> 65 (LOD = 0.2 ng/microL), and 102 --> 67 (LOD = 0.1 ng/microL) were applied for the determination of the total short- and medium-chain PCA concentration in pooled fish liver samples (North Sea dab, cod, flounder) from the North Sea and from the Baltic Sea using both MS technologies. Total PCA concentrations were in the range of 88-607 ng/g. Accuracy was controlled with spiked samples and deviated not more than 15% from expected values.  相似文献   

18.
Wen B  Ma L  Nelson SD  Zhu M 《Analytical chemistry》2008,80(5):1788-1799
A highly sensitive and efficient method has been developed for detection and characterization of glutathione (gamma-glutamyl-cysteinylglycine, GSH)-trapped reactive metabolites using a negative precursor ion (PI) as the survey scan to trigger the acquisition of positive enhanced product ion (EPI) spectra on a triple quadrupole linear ion trap mass spectrometer. The negative precursor ion scan step was carried out monitoring the anion at m/z 272, corresponding to deprotonated gamma-glutamyl-dehydroalanyl-glycine originating from the glutathionyl moiety. Because of the uniqueness and abundance of the anion at m/z 272, this single survey scan exhibited broad utility in the detection of unknown GSH conjugates. Further structural characterization was achieved by analyzing positive MS2 spectra that featured rich fragments without mass cutoff and were acquired in the same liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis. The effectiveness and reliability of this approach was evaluated using a number of model compounds in human liver microsomal incubations, including acetaminophen, clozapine, diclofenac, imipramine, meclofenamic acid, and ticlopidine. As a result, the PI-EPI approach revealed the presence of known adducts and, in many instances, identified additional conjugates that had not been reported previously. In comparison to the widely used neutral loss (NL) scanning analysis, this approach provided superior sensitivity and selectivity for different types of GSH conjugates. More importantly, the PI-EPI approach is suitable for high-throughput screening of reactive metabolites in the drug discovery process.  相似文献   

19.
A chip-based capillary electrophoresis/mass spectrometry (CE/MS) system is described for the CE separation and on-line electrospray detection of carnitine and selected acylcarnitines from mixtures of analytical standards as well as extracts of fortified human urine. Chip-based CE/MS experiments in two different laboratories were carried out using a triple-quadrupole mass spectrometer and a quadrupole time-of-flight (QTOF) mass spectrometer, respectively. The glass chips used with both systems were comparably equipped with a microfabricated capillary electrophoresis (CE) channel but with different electrosprayers. The quadrupole chip-based CE/MS experiments employed a miniature coupled microsprayer, which allowed coupling of the microelectrospray process via a micro liquid junction at the exit of the CE capillary channel. Selected ion monitoring (SIM) CE/MS experiments were employed for all of the quadrupole CE/MS work. The QTOF CE/MS full-scan single MS and MS/MS experiments were carried out in another laboratory using accurate mass measurement TOF mass spectrometry techniques. The electrospray process that was employed with the QTOF system differed in that an inserted nanoelectrospray capillary needle was carefully affixed into a flat-bottomed hole that was aligned with the CE channel exit orifice. SIM CE/MS using the described quadrupole system provided acceptable ion current electropherograms from fmole levels from analytical standard solutions of carnitine and acylcarnitines that were manually injected (loaded) onto the chip. In addition, the corresponding electropherograms for human urine fortified with the target carnitine and acylcarnitines at a 10-20 microg/mL (35-124 microM) level were obtained via SIM CE/MS techniques. The measured CE separation efficiency for the SIM CE/MS electropherograms was determined to be 2860 plates (peak width at half-height method or N = 5.54(T/WO.5(2)), and carnitine and three acylcarnitines were separated in less than 48 s. In contrast, using quadrupole-TOF technologies, the same samples could be diluted by a factor of 2-4 to obtain a comparable detector response for the target compounds. In the full-scan, single mass analyzer mode (m/z 150-500), the CE separation efficiency was measured to be 2600 plates, but mass measurement accuracy was less than 5.0 ppm for the quaternary cations. In the CE/MS/MS mode, full-scan collision-induced dissociation (CID) mass spectra were obtained with a mass accuracy of < or =10 ppm for the higher mass ions and < or =27 ppm for the lower mass product ions. These results demonstrate the feasibility for on-chip CE separation and electrospray mass spectrometric detection for these important compounds in synthetic mixtures, as well as in human urine extracts.  相似文献   

20.
Brevetoxins, the toxic components of "red tide" algae, all share one of two robust polycyclic ether backbone structures, but they are distinguished by differing side-chain substituents. Electrospray ionization mass spectrometry analyses of brevetoxins have shown that the polyether structure invariably has a very high affinity for sodium cations that results in the production of abundant (M + Na)+ ions even when sodium cations are only present as impurities. Because the ionic charge tends to remain localized on the sodium atom and because at least two bonds must be broken in order to produce polycyclic backbone fragmentation, it is extremely difficult to obtain abundant product ions (other than Na+) from (M + Na)+ brevetoxin precursor ions in low-energy collision-induced dissociation (CID) MS/MS experiments. This report establishes that acid additives (oxalic acid, trifluoroacetic acid, and particularly hydrochloric acid) in aqueous methanol solutions can promote high yields of protonated brevetoxin molecules (MH+ ions) for Btx-1, -2, and -9 brevetoxins. Most importantly, unlike their (M + Na)+ counterparts, MH+ precursor ions offer readily detectable product ions in CID MS/MS experiments, even under low-energy collisions. This direct structural characterization approach has provided decomposition information from brevetoxins that was previously inaccessible, including the identification of diagnostic product ions for "type A" brevetoxins (m/z 611) and "type B" brevetoxins (m/z 779, 473, 179) and characteristic ions for Btx-1 (m/z 221, 139), Btx-2 (m/z 153), and Btx-9 (m/z 157, 85). Precursor ion scans and constant neutral loss scans are proposed to enable screening of individual type A or type B brevetoxins present in naturally occurring mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号