首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteomics analysis based-on reversed-phase liquid chromatography (RPLC) is widely practiced; however, variations providing cutting-edge RPLC performance have generally not been adopted even though their benefits are well established. Here, we describe an automated format 20 kpsi RPLC system for proteomics and metabolomics that includes on-line coupling of micro-solid phase extraction for sample loading and allows electrospray ionization emitters to be readily replaced. The system uses 50 microm i.d. x 40-200 cm fused-silica capillaries packed with 1.4-3-microm porous C18-bonded silica particles to obtain chromatographic peak capacities of 1000-1500 for complex peptide and metabolite mixtures. This separation quality provided high-confidence identifications of >12 000 different tryptic peptides from >2000 distinct Shewanella oneidensis proteins (approximately 40% of the proteins predicted for the S. oneidensis proteome) in a single 12-h ion trap tandem mass spectrometry (MS/MS) analysis. The protein identification reproducibility approached 90% between replicate experiments. The average protein MS/MS identification rate exceeded 10 proteins/min, and 1207 proteins were identified in 120 min through assignment of 5944 different peptides. The proteomic analysis dynamic range of the 20 kpsi RPLC-ion trap MS/MS was approximately 10(6) based on analyses of a human blood plasma sample, for which 835 distinct proteins were identified with high confidence in a single 12-h run. A single run of the 20 kpsi RPLC-accurate mass MS detected >5000 different compounds from a metabolomics sample.  相似文献   

2.
Proteomics has grown significantly with the aid of new technologies that consistently are becoming more streamlined. While processing of proteins from a whole cell lysate is typically done in a bottom-up fashion utilizing MS/MS of peptides from enzymatically digested proteins, top-down proteomics is becoming a viable alternative that until recently has been limited largely to offline analysis by tandem mass spectrometry. Here we describe a method for high-resolution tandem mass spectrometery of intact proteins on a chromatographic time scale. In a single liquid chromatography-tandem mass spectrometry (LC-MS/MS) run, we have identified 22 yeast proteins with molecular weights from 14 to 35 kDa. Using anion exchange chromatography to fractionate a whole cell lysate before online LC-MS/MS, we have detected 231 metabolically labeled (14N/15N) protein pairs from Saccharomyces cerevisiae. Thirty-nine additional proteins were identified and characterized from LC-MS/MS of selected anion exchange fractions. Automated localization of multiple acetylations on Histone H4 was also accomplished on an LC time scale from a complex protein mixture. To our knowledge, this is the first demonstration of top-down proteomics (i.e., many identifications) on linear ion trap Fourier transform (LTQ FT) systems using high-resolution MS/MS data obtained on a chromatographic time scale.  相似文献   

3.
Nonenzymatic glycation of tissue proteins has important implications in the development of complications of diabetes mellitus. Herein we report improved methods for the enrichment and analysis of glycated peptides using boronate affinity chromatography and electron-transfer dissociation mass spectrometry, respectively. The enrichment of glycated peptides was improved by replacing an off-line desalting step with an online wash of column-bound glycated peptides using 50 mM ammonium acetate, followed by elution with 100 mM acetic acid. The analysis of glycated peptides by MS/MS was improved by considering only higher charged (> or = 3) precursor ions during data-dependent acquisition, which increased the number of glycated peptide identifications. Similarly, the use of supplemental collisional activation after electron transfer (ETcaD) resulted in more glycated peptide identifications when the MS survey scan was acquired with enhanced resolution. Acquiring ETD-MS/MS data at a normal MS survey scan rate, in conjunction with the rejection of both 1+ and 2+ precursor ions, increased the number of identified glycated peptides relative to ETcaD or the enhanced MS survey scan rate. Finally, an evaluation of trypsin, Arg-C, and Lys-C showed that tryptic digestion of glycated proteins was comparable to digestion with Lys-C and that both were better than Arg-C in terms of the number of glycated peptides and corresponding glycated proteins identified by LC-MS/MS.  相似文献   

4.
Due to the complexity of proteome samples, only a portion of peptides and thus proteins can be identified in a single LC-MS/MS analysis in current shotgun proteomics methodologies. It has been shown that replicate runs can be used to improve the comprehensiveness of the proteome analysis; however, high-intensity peptides tend to be analyzed repeatedly in different runs, thus reducing the chance of identifying low-intensity peptides. In contrast to commonly used online ESI-MS, offline MALDI decouples the separation from MS acquisition, thus allowing in-depth selection for specific precursor ions. Accordingly, we extended a strategy for offline LC-MALDI MS/MS analysis using a precursor ion exclusion list consisting of all identified peptides in preceding runs. The exclusion list eliminated redundant MS/MS acquisitions in subsequent runs, thus reducing MALDI sample depletion and allowing identification of a larger number of peptide identifications in the cumulative dataset. In the analysis of the digest of an Escherichia coli lysate, the exclusion list strategy resulted in a 25% increase in the number of unique peptide identifications in the second run, in contrast to simply pooling MS/MS data from two replicate runs. To reduce the increased LC analysis time for repeat runs, a four-column multiplexed LC system was developed to carry out separation simultaneously. The multiplexed LC-MALDI MS provides a high-throughput platform to utilize the exclusion list strategy in proteome analysis.  相似文献   

5.
Currently, unbiased protein identification is mostly performed by directly coupling reversed-phase liquid chromatography (RPLC) via electrospray ionization to a mass spectrometer. In contrast to the innovations in mass spectrometric instrumentation, cutting-edge technology in RPLC has generally not been well adopted. Here, we describe the effects of increased peak capacities on the number of identified proteins and peptides in complex mixtures utilizing collision-induced dissociation on an LTQ-Orbitrap Velos, providing a rationale for using advanced RPLC technology in LC-MS/MS. Using two different column lengths and gradient times between 1 and 10 h, we found a linear relation between the obtained peak capacities and the number of identified peptides. We identified on average 2516 proteins in the tryptic digest of 1 μg of HeLa lysate using an 8 h gradient on a 50 cm column packed with 2 μm C18 reversed-phase chromatographic material.  相似文献   

6.
We describe approaches for proteomics analysis using electrospray ionization-tandem mass spectrometry coupled with fast reversed-phase liquid chromatography (RPLC) separations. The RPLC separations used 50-microm-i.d. fused-silica capillaries packed with submicrometer-sized C18-bonded porous silica particles and achieved peak capacities of 130-420 for analytes from proteome tryptic digests. When these separations were combined with linear ion trap tandem mass spectrometry measurements, approximately 1000 proteins could be identified in 50 min from approximately 4000 identified tryptic peptides; approximately 550 proteins in 20 min from approximately 1800 peptides; and approximately 250 proteins in 8 min from approximately 700 peptides for a S. oneidensis tryptic digest. The dynamic range for protein identification with the fast separations was determined to be approximately 3-4 orders of magnitude of relative protein abundance on the basis of known proteins in human blood plasma analyses. We found that 55% of the MS/MS spectra acquired during the entire analysis (and up to 100% of the MS/MS spectra acquired from the most data-rich zone) provided sufficient quality for identifying peptides. The results confirm that such analyses using very fast (minutes) RPLC separations based on columns packed with microsized porous particles are primarily limited by the MS/MS analysis speed.  相似文献   

7.
Identifying proteins and their modification states and with known levels of confidence remains as a significant challenge for proteomics. Random or decoy peptide databases are increasingly being used to estimate the false discovery rate (FDR), e.g., from liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses of tryptic digests. We show that this approach can significantly underestimate the FDR and describe an approach for more confident protein identifications that uses unique partial sequences derived from a combination of database searching and amino acid residue sequencing using high-accuracy MS/MS data. Applied to a Saccharomyces cerevisiae tryptic digest, the approach provided 3 132 confident peptide identifications ( approximately 5% modified in some fashion), covering 575 proteins with an estimated zero FDR. The conventional approach provided 3 359 peptide identifications and 656 proteins with 0.3% FDR based upon a decoy database analysis. However, the present approach revealed approximately 5% of the 3 359 identifications to be incorrect and many more as potentially ambiguous (e.g., due to not considering certain amino acid substitutions and modifications). In addition, 677 peptides and 39 proteins were identified that had been missed by conventional analysis, including nontryptic peptides, peptides with a variety of expected/unexpected chemical modifications, known/unknown post-translational modifications, single nucleotide polymorphisms or gene encoding errors, and multiple modifications of individual peptides.  相似文献   

8.
The throughput of proteomics measurements that provide broad protein coverage is limited by the quality and speed of both the separations as well as the subsequent mass spectrometric analysis; at present, analysis times can range anywhere from hours (high throughput) to days or longer (low throughput). We have explored the basis for proteomics analyses conducted on the order of minutes using high-speed capillary RPLC combined through on-line electrospray ionization interface with high-accuracy mass spectrometry (MS) measurements. Short 0.8-microm porous C18 particle-packed 50-microm-i.d. capillaries were used to speed the RPLC separations while still providing high-quality separations. Both time-of-flight (TOF) and Fourier transform ion cyclotron resonance (FTICR) MS were applied for identifying peptides using the accurate mass and time (AMT) tag approach. Peptide RPLC relative retention (elution) times that were generated by solvent gradients that differed by at least 25-fold were found to provide relative elution times that agreed to within 5%, which provides the basis for using peptide AMT tags for higher throughput proteomics measurements. For fast MS acquisition speeds (e.g., 0.2 s for TOF and either approximately 0.3 or approximately 0.6 s for FTICR), peptide mass measurement accuracies of better than +/-15 ppm were obtained with the high-speed RPLC separations. The ability to identify peptides and the overall proteome coverage was determined by factors that include the separation peak capacity, the sensitivity of the MS (with fast scanning), and the accuracy of both the mass measurements and the relative RPLC peptide elution times. The experimental RPLC relative elution time accuracies of 5% (using high-speed capillary RPLC) and mass measurement accuracies of better than +/-15 ppm allowed for the confident identification of >2800 peptides and >760 proteins from >13,000 different putative peptides detected from a Shewanellaoneidensis tryptic digest. Initial results for both RPLC-ESI-TOF and RPLC-ESI-FTICR MS were similar, with approximately 2000 different peptides from approximately 600 different proteins identified within 2-3 min. For <120-s proteomic analysis, TOF MS analyses were more effective, while FTICR MS was more effective for the >150-s analysis due to the improved mass accuracies attained using longer spectrum acquisition times.  相似文献   

9.
Yuan H  Zhou Y  Xia S  Zhang L  Zhang X  Wu Q  Liang Z  Zhang Y 《Analytical chemistry》2012,84(11):5124-5132
An online integrated platform for proteome profiling was established, with the combination of protein separation by microreversed phase liquid chromatography (μRPLC), online acetonitrile (ACN) removal, and pH adjustment by a hollow fiber membrane interface (HFMI), online digestion by an immobilized enzymatic microreactor (IMER), as well as peptide separation and proteins identification by μRPLC or nano-RPLC-electrospray ionization tandem mass spectrometry (μRPLC-ESI-MS/MS). To evaluate the performance of such a platform, a three-protein mixture with mass ranging from 5 to 500 ng was analyzed automatically. Compared to the offline counterpart, although similar protein sequence coverages were obtained by the integrated platform, the signal intensity of total ion chromatogram was improved by almost 4 times. In addition, such an integrated platform was further applied for the analysis of extracted proteins from rat brain. Compared to the results obtained by offline counterpart and traditional MudPIT approach under similar conditions, by the integrated platform, the identified protein group number was comparable, but the analysis time was shortened to less than half of that taken by the traditional approaches. All these results demonstrated that our developed integrated platform might offer a promising tool for high-throughput and large-scale profiling of proteomes.  相似文献   

10.
This paper presents application of sequential enhanced data processing procedures to high-resolution tandem mass spectra for identification of peptides using the Mascot database search algorithm. A strategy for (1) selection of fragment ion peaks from MS/MS spectra, (2) utilization of improved mass accuracy of the precursor ions, and (3) wavelet denoising of the mass spectra prior to fragment ion selection have been developed. The number of peptide identifications obtained using the enhanced processing was then compared with that obtained using software provided by the instrument manufacturer. Approximately 9000 MS/MS spectra acquired by the Applied Biosystems 4700 TOF/TOF MS instrument were used as a model data set. After application of the new processing, an increase of 33% unique peptides and 22% protein identifications with at least two unique peptides were found. The influence of the processing on the percentage of false positives, estimated by searching against a randomized database, was estimated to increase false positive identifications from 2.7 to 3.9%, which was still below the 5% error rate specified in the Mascot search. These data processing approaches increase the amount of information that can be extracted from LC-MS analysis without the necessity of additional experiments.  相似文献   

11.
MALDI mass spectrometry imaging (MSI) is a promising technique in the field of molecular (immuno)histology but is confronted with the problematic large-scale identification of peptides from thin tissue sections. In this study we present a workflow that significantly increased the number of identified peptides in a given MALDI-MSI data set and we evaluated its power concerning relative peptide quantifications. Fourier transform mass spectrometry (FTMS) profiling on matrix-coated thin tissue sections allowed us to align spectra of different MS sources, matching identical peaks in the process, thus linking MSI data to tandem mass spectrometry (MS/MS) on one hand and semiquantitative liquid chromatography (LC)/MS data on the other. Bonanza clustering was applied in order to group MS/MS spectra of structurally related peptides, making it possible to infer the identity of MSI-detected compounds based on identified members within the same cluster, effectively increasing the number of identifications in a single MSI data set. Out of 136 detected peptides with MALDI-MSI, we were able to identify 46 peptides. For 31 of these, a LC/quadrupole time-of-flight (QTOF) counterpart was detected, and we observed similar obese (ob/ob) to wild-type (wt) peak intensity ratios for 18 peptides. This workflow significantly increased the number of identifications of peptide masses detected with MALDI-MSI and evaluated the power of this imaging method for relative quantification of peptide levels between experimental conditions.  相似文献   

12.
The large-scale identification and quantitation of proteins via nanoliquid chromatography (LC)-tandem mass spectrometry (MS/MS) offers a unique opportunity to gain unprecedented insight into the microbial composition and biomolecular activity of true environmental samples. However, in order to realize this potential for marine biofilms, new methods of protein extraction must be developed as many compounds naturally present in biofilms are known to interfere with common proteomic manipulations and LC-MS/MS techniques. In this study, we used amino acid analyses (AAA) and LC-MS/MS to compare the efficacy of three sample preparation methods [6 M guanidine hydrochloride (GuHCl) protein extraction + in-solution digestion + 2D LC; sodium dodecyl sulfate (SDS) protein extraction + 1D gel LC; phenol protein extraction + 1D gel LC] for the metaproteomic analyses of an environmental marine biofilm. The AAA demonstrated that proteins constitute 1.24% of the biofilm wet weight and that the compared methods varied in their protein extraction efficiencies (0.85-15.15%). Subsequent LC-MS/MS analyses revealed that the GuHCl method resulted in the greatest number of proteins identified by one or more peptides whereas the phenol method provided the greatest sequence coverage of identified proteins. As expected, metagenomic sequencing of the same biofilm sample enabled the creation of a searchable database that increased the number of protein identifications by 48.7% (≥1 peptide) or 54.7% (≥2 peptides) when compared to SwissProt database identifications. Taken together, our results provide methods and evidence-based recommendations to consider for qualitative or quantitative biofilm metaproteome experimental design.  相似文献   

13.
Time-of-flight mass spectrometry (TOF MS) is increasingly used in proteomics research. Herein, we report on the development and characterization of a TOF MS instrument with improved sensitivity equipped with an electrodynamic ion funnel trap (IFT) that employs an automated gain control (AGC) capability. The IFT-TOF MS was coupled to a reversed-phase capillary liquid chromatography (RPLC) separation and evaluated in experiments with complex proteolytic digests. When applied to a global tryptic digest of Shewanella oneidensis proteins, an order-of-magnitude increase in sensitivity compared to that of the conventional continuous mode of operation was achieved due to efficient ion accumulation prior to TOF MS analysis. As a result of this sensitivity improvement and related improvement in mass measurement accuracy, the number of unique peptides identified in the AGC-IFT mode was 5-fold greater than that obtained in the continuous mode.  相似文献   

14.
For analysis of intact proteins by mass spectrometry (MS), a new twist to a two-dimensional approach to proteome fractionation employs an acid-labile detergent instead of sodium dodecyl sulfate during continuous-elution gel electrophoresis. Use of this acid-labile surfactant (ALS) facilitates subsequent reversed-phase liquid chromatography (RPLC) for a net two-dimensional fractionation illustrated by transforming thousands of intact proteins from Saccharomyces cerevisiae to mixtures of 5-20 components (all within approximately 5 kDa of one another) for presentation via electrospray ionization (ESI) to a Fourier transform MS (FTMS). Between 3 and 13 proteins have been detected directly using ESI-FTMS (or MALDI-TOF), and the fractionation showed a peak capacity of approximately 400 between 0 and 70 kDa. A probability-based identification was made automatically from raw MS/MS data (obtained using a quadrupole-FTMS hybrid instrument) for one protein that differed from that predicted in a yeast database of approximately 19,000 protein forms. This ALS-PAGE/RPLC approach to proteome processing ameliorates the "front end" problem that accompanies direct analysis of whole proteins and assists the future realization of protein identification with 100% sequence coverage in a high-throughput format.  相似文献   

15.
Online liquid chromatography-mass spectrometric (LC-MS) analysis of intact proteins (i.e., top-down proteomics) is a growing area of research in the mass spectrometry community. A major advantage of top-down MS characterization of proteins is that the information of the intact protein is retained over the vastly more common bottom-up approach that uses protease-generated peptides to search genomic databases for protein identification. Concurrent to the emergence of top-down MS characterization of proteins has been the development and implementation of the stable isotope labeling of amino acids in cell culture (SILAC) method for relative quantification of proteins by LC-MS. Herein we describe the qualitative and quantitative top-down characterization of proteins derived from SILAC-labeled Aspergillus flavus using nanoflow reversed-phase liquid chromatography directly coupled to a linear ion trap Fourier transform ion cyclotron resonance mass spectrometer (nLC-LTQ-FTICR-MS). A. flavus is a toxic filamentous fungus that significantly impacts the agricultural economy and human health. SILAC labeling improved the confidence of protein identification, and we observed 1318 unique protein masses corresponding to 659 SILAC pairs, of which 22 were confidently identified. However, we have observed some limiting issues with regard to protein quantification using top-down MS/MS analyses of SILAC-labeled proteins. The role of SILAC labeling in the presence of competing endogenously produced amino acid residues and its impact on quantification of intact species are discussed in detail.  相似文献   

16.
The dynamic range of protein expression in complex organisms coupled with the stochastic nature of discovery-driven tandem mass spectrometry (MS/MS) analysis continues to impede comprehensive sequence analysis and often provides only limited information for low-abundance proteins. High-performance fractionation of proteins or peptides prior to mass spectrometry analysis can mitigate these effects, though achieving an optimal combination of automation, reproducibility, separation peak capacity, and sample yield remains a significant challenge. Here we demonstrate an automated nanoflow 3-D liquid chromatography (LC)-MS/MS platform based on high-pH reversed phase (RP), strong anion exchange (SAX), and low-pH reversed phase (RP) separation stages for analysis of complex proteomes. We observed that RP-SAX-RP outperformed RP-RP for analysis of tryptic peptides derived from Escherichia coli and enabled identification of proteins present at a level of 50 copies per cell in Saccharomyces cerevisiae, corresponding to an estimated detection limit of 500 amol, from 40 μg of total lysate on a low-resolution 3-D ion trap mass spectrometer. A similar study performed on a LTQ-Orbitrap yielded over 4000 unique proteins from 5 μg of total yeast lysate analyzed in a single, 101 fraction RP-SAX-RP LC-MS/MS acquisition, providing an estimated detection limit of 65 amol for proteins expressed at 50 copies per cell.  相似文献   

17.
Liquid chromatography coupled to mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/MS) has become a standard technique for analyzing complex peptide mixtures to determine composition and relative abundance. Several high-throughput proteomics techniques attempt to combine complementary results from multiple LC-MS and LC-MS/MS analyses to provide more comprehensive and accurate results. To effectively collate and use results from these techniques, variations in mass and elution time measurements between related analyses need to be corrected using algorithms designed to align the various types of data: LC-MS/MS versus LC-MS/MS, LC-MS versus LC-MS/MS, and LC-MS versus LC-MS. Described herein are new algorithms referred to collectively as liquid chromatography-based mass spectrometric warping and alignment of retention times of peptides (LCMSWARP), which use a dynamic elution time warping approach similar to traditional algorithms that correct for variations in LC elution times using piecewise linear functions. LCMSWARP is compared to the equivalent approach based upon linear transformation of elution times. LCMSWARP additionally corrects for temporal drift in mass measurement accuracies. We also describe the alignment of LC-MS results and demonstrate their application to the alignment of analyses from different chromatographic systems, showing the suitability of the present approach for more complex transformations.  相似文献   

18.
We describe the first implementation of negative electron-transfer dissociation (NETD) on a hybrid ion trap-orbitrap mass spectrometer and its application to high-throughput sequencing of peptide anions. NETD, coupled with high pH separations, negative electrospray ionization (ESI), and an NETD compatible version of OMSSA, is part of a complete workflow that includes the formation, interrogation, and sequencing of peptide anions. Together these interlocking pieces facilitated the identification of more than 2000 unique peptides from Saccharomyces cerevisiae representing the most comprehensive analysis of peptide anions by tandem mass spectrometry to date. The same S. cerevisiae samples were interrogated using traditional, positive modes of peptide LC-MS/MS analysis (e.g., acidic LC separations, positive ESI, and collision activated dissociation), and the resulting peptide identifications of the different workflows were compared. Due to a decreased flux of peptide anions and a tendency to produce lowly charged precursors, the NETD-based LC-MS/MS workflow was not as sensitive as the positive mode methods. However, the use of NETD readily permits access to underrepresented acidic portions of the proteome by identifying peptides that tend to have lower pI values. As such, NETD improves sequence coverage, filling out the acidic portions of proteins that are often overlooked by the other methods.  相似文献   

19.
Proteomics is the study of all proteins in a biological sample. High-pressure liquid chromatography coupled online with mass spectrometry (HPLC/MS) is currently the method of choice for proteomic analysis. Proteins are extracted, separated at the protein or peptide level (after enzymatic digestion), and fractions are analyzed by HPLC/MS. Detection during off-line fractionation is generally conducted using UV-vis, which is not sensitive enough to distinguish fractions having the largest concentration of proteins/peptides and should not be combined prior to HPLC/MS. To overcome this deficiency, we utilize fluorescence or UV-laser induced fluorescence (UV-LIF) detection for measuring proteins/peptides during the off-line fractionation. Fluorescence detection allows low-abundance proteins/peptides that contain aromatic amino acids to be measured. In this study, peptide/protein samples fractionated using ion-exchange chromatography were detected using UV absorbance, fluorescence, and UV-LIF. The results indicated that fluorescence and UV-LIF were able to detect the lower abundance proteins/peptides to give a more representative chromatogram, allowing the analyst to decide which fractions should be combined prior to HPLC/tandem mass spectrometry (MS/MS) analysis.  相似文献   

20.
X He  M Kozak  S Nimkar 《Analytical chemistry》2012,84(18):7643-7647
Oral fluid has been gaining more acceptance as the alternative matrix for forensic toxicology. Currently, Δ(9)-tetrahydrocannabinol (THC) is used as the primary target for detecting cannabis use in oral fluid. Meanwhile, THC carboxylic acid (THCA) in oral fluid is reported as a more reliable marker for cannabis abuse as its presence does not come from passive exposure. An analytical method for simultaneous quantitation of THC and THCA will be efficient for toxicology laboratories. THCA quantitation is challenging due to its very low concentration in oral fluid. Recently reported liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based methods achieved sufficient sensitivity but involved complex sample preparation procedures. We aimed to develop a sensitive LC-MS/MS method for simultaneous quantitation of THC and THCA in oral fluid with low-flow liquid chromatography and a Q Exactive mass spectrometer, using offline sample preparation of oral fluid followed by microflow LC with online sample cleanup. The total runtime of the method was 12.5 min. The method had a lower limit of quantitation of 7.5 pg/mL and was linear from 7.5 to 300 pg/mL for THCA. The intra- and interbatch precision of the method ranged from 3.3% to 9.3% for THC and THCA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号