首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable semantics for disjunctive programs   总被引:1,自引:0,他引:1  
We introduce the stable model semantics fordisjunctive logic programs and deductive databases, which generalizes the stable model semantics, defined earlier for normal (i.e., non-disjunctive) programs. Depending on whether only total (2-valued) or all partial (3-valued) models are used we obtain thedisjunctive stable semantics or thepartial disjunctive stable semantics, respectively. The proposed semantics are shown to have the following properties:
  • ? For normal programs, the disjunctive (respectively, partial disjunctive) stable semantics coincides with thestable (respectively,partial stable) semantics.
  • ? For normal programs, the partial disjunctive stable semantics also coincides with thewell-founded semantics.
  • ? For locally stratified disjunctive programs both (total and partial) disjunctive stable semantics coincide with theperfect model semantics.
  • ? The partial disjunctive stable semantics can be generalized to the class ofall disjunctive logic programs.
  • ? Both (total and partial) disjunctive stable semantics can be naturally extended to a broader class of disjunctive programs that permit the use ofclassical negation.
  • ? After translation of the programP into a suitable autoepistemic theory \( \hat P \) the disjunctive (respectively, partial disjunctive) stable semantics ofP coincides with the autoepistemic (respectively, 3-valued autoepistemic) semantics of \( \hat P \) .
  •   相似文献   

    2.
    We show that stable models of logic programs may be viewed as minimal models of programs that satisfy certain additional constraints. To do so, we transform the normal programs into disjunctive logic programs and sets of integrity constraints. We show that the stable models of the normal program coincide with the minimal models of the disjunctive program thatsatisfy the integrity constraints. As a consequence, the stable model semantics can be characterized using theextended generalized closed world assumption for disjunctive logic programs. Using this result, we develop a bottomup algorithm for function-free logic programs to find all stable models of a normal program by computing the perfect models of a disjunctive stratified logic program and checking them for consistency with the integrity constraints. The integrity constraints provide a rationale as to why some normal logic programs have no stable models.  相似文献   

    3.
    On the partial semantics for disjunctive deductive databases   总被引:1,自引:0,他引:1  
    Partial stable models for deductive databases, i.e., normal function-free logic programs (also called datalog programs), have two equivalent definitions: one based on 3-valued logics and another based on the notion of unfounded set. The notion of partial stable model has been extended to disjunctive deductive databases using 3-valued logics. In this paper, a characterization of partial stable models for disjunctive datalog programs is given using a suitable extension of the notion of unfounded set. Two interesting sub-classes of partial stable models, M-stable (Maximal-stable) (also called regular models, preferred extension,and maximal stable classes) and L-stable (Least undefined-stable) models, are then extended from normal to disjunctive datalog programs. On the one hand, L-stable models are shown to be the natural relaxation of the notion of total stable model; on the other hand the less strict M-stable models, endowed with a nice modularity property, may be appealing from the programming and computational point of view. M-stable and L-stable models are also compared with the regular models for disjunctive datalog programs recently proposed in the literature.  相似文献   

    4.
    This paper addresses complexity issues for important problems arising with disjunctive logic programming. In particular, the complexity of deciding whether a disjunctive logic program is consistent is investigated for a variety of well-known semantics, as well as the complexity of deciding whether a propositional formula is satisfied by all models according to a given semantics. We concentrate on finite propositional disjunctive programs with as well as without integrity constraints, i.e., clauses with empty heads; the problems are located in appropriate slots of the polynomial hierarchy. In particular, we show that the consistency check is 2 p -complete for the disjunctive stable model semantics (in the total as well as partial version), the iterated closed world assumption, and the perfect model semantics, and we show that the inference problem for these semantics is 2 p -complete; analogous results are derived for the answer sets semantics of extended disjunctive logic programs. Besides, we generalize previously derived complexity results for the generalized closed world assumption and other more sophisticated variants of the closed world assumption. Furthermore, we use the close ties between the logic programming framework and other nonmonotonic formalisms to provide new complexity results for disjunctive default theories and disjunctive autoepistemic literal theories.Parts of the results in this paper appeared in form of an abstract in the Proceedings of the Twelfth ACM SIGACT SIGMOD-SIGART Symposium on Principles of Database Systems (PODS-93), pp. 158–167. Other parts appeared in shortened form in the Proceedings of the International Logic Programming Symposium, Vancouver, October 1993 (ILPS-93), pp. 266–278. MIT Press.  相似文献   

    5.
    In this paper, we propose a newsemantic framework for disjunctive logic programming by introducingstatic expansions of disjunctive programs. The class of static expansions extends both the classes of stable, well-founded and stationary models of normal programs and the class of minimal models of positive disjunctive programs. Any static expansion of a programP provides the corresponding semantics forP consisting of the set of all sentences logically implied by the expansion. We show that among all static expansions of a disjunctive programP there is always theleast static expansion, which we call thestatic completion ¯P ofP. The static completion¯P can be defined as the least fixed point of a naturalminimal model operator and can be constructed by means of a simpleiterative procedure. The semantics defined by the static completion¯P is called thestatic semantics ofP. It coincides with the set of sentences that are true inall static expansions ofP. For normal programs, it coincides with the well-founded semantics. The class of static expansions represents a semantic framework which differs significantly from the other semantics proposed recently for disjunctive programs and databases. It is also defined for a much broader class of programs.Dedicated to Jack MinkerPartially supported by the National Science Foundation grant # IRI-9313061.  相似文献   

    6.
    Propositional semantics for disjunctive logic programs   总被引:2,自引:0,他引:2  
    In this paper we study the properties of the class of head-cycle-free extended disjunctive logic programs (HEDLPs), which includes, as a special case, all nondisjunctive extended logic programs. We show that any propositional HEDLP can be mapped in polynomial time into a propositional theory such that each model of the latter corresponds to an answer set, as defined by stable model semantics, of the former. Using this mapping, we show that many queries over HEDLPs can be determined by solving propositional satisfiability problems. Our mapping has several important implications: It establishes the NP-completeness of this class of disjunctive logic programs; it allows existing algorithms and tractable subsets for the satisfiability problem to be used in logic programming; it facilitates evaluation of the expressive power of disjunctive logic programs; and it leads to the discovery of useful similarities between stable model semantics and Clark's predicate completion.  相似文献   

    7.
    The addition of aggregates has been one of the most relevant enhancements to the language of answer set programming (ASP). They strengthen the modelling power of ASP in terms of natural and concise problem representations. Previous semantic definitions typically agree in the case of non-recursive aggregates, but the picture is less clear for aggregates involved in recursion. Some proposals explicitly avoid recursive aggregates, most others differ, and many of them do not satisfy desirable criteria, such as minimality or coincidence with answer sets in the aggregate-free case.In this paper we define a semantics for programs with arbitrary aggregates (including monotone, antimonotone, and nonmonotone aggregates) in the full ASP language allowing also for disjunction in the head (disjunctive logic programming — DLP). This semantics is a genuine generalization of the answer set semantics for DLP, it is defined by a natural variant of the Gelfond–Lifschitz transformation, and treats aggregate and non-aggregate literals in a uniform way. This novel transformation is interesting per se also in the aggregate-free case, since it is simpler than the original transformation and does not need to differentiate between positive and negative literals. We prove that our semantics guarantees the minimality (and therefore the incomparability) of answer sets, and we demonstrate that it coincides with the standard answer set semantics on aggregate-free programs.Moreover, we carry out an in-depth study of the computational complexity of the language. The analysis pays particular attention to the impact of syntactical restrictions on programs in the form of limited use of aggregates, disjunction, and negation. While the addition of aggregates does not affect the complexity of the full DLP language, it turns out that their presence does increase the complexity of normal (i.e., non-disjunctive) ASP programs up to the second level of the polynomial hierarchy. However, we show that there are large classes of aggregates the addition of which does not cause any complexity gap even for normal programs, including the fragment allowing for arbitrary monotone, arbitrary antimonotone, and stratified (i.e., non-recursive) nonmonotone aggregates. The analysis provides some useful indications on the possibility to implement aggregates in existing reasoning engines.  相似文献   

    8.
    We investigate the class ofstationary or partial stable models of normal logic programs. This important class of models includes all (total)stable models, and, moreover, thewell-founded model is always its smallest member. Stationary models have several natural fixed-point definitions and can be equivalently obtained as expansions or extensions of suitable autoepistemic or default theories. By taking a particular subclass of this class of models one can obtain different semantics of logic programs, including the stable semantics and the well-founded semantics. Stationary models can be also naturally extended to the class of all disjunctive logic programs. These features of stationary models designate them as an important class of models with applications reaching far beyond the realm of logic programming.Partially supported by the National Science Foundation grant #IRI-9313061.  相似文献   

    9.
    This paper completes an investigation of the logical expressibility of finite, locally stratified, general logic programs. We show that every hyperarithmetic set can be defined by a suitably chosen locally stratified logic program (as a set of values of a predicate over its perfect model). This is an optimal result, since the perfect model of a locally stratified program is itself an implicitly definable hyperarithmetic set (under a recursive coding of the Herbrand base); hence, to obtain all hyperarithmetic sets requires something new, in this case selecting one predicate from the model. We find that the expressive power of programs does not increase when one considers the programs which have a unique stable model or a total well-founded model. This shows that all these classes of structures (perfect models of logically stratified logic programs, well-founded models which turn out to be total, and stable models of programs possessing a unique stable model) are all closely connected with Kleene's hyperarithmetical hierarchy. Thus, for general logic programming, negation with respect to two-valued logic is related to the hyperarithmetic hierarchy in the same way as Horn logic is to the class of recursively enumerable sets. In particular, a set is definable in the well-founded semantics by a programP whose well-founded partial model is total iff it is hyperarithmetic.Research partially supported by the U.S. Army Research Office through the Mathematical Sciences Institute of Cornell University.Research partially supported by NSF Grant IRI-9012902 and partially supported by the U.S. Army Research Office through the Mathematical Sciences Institute of Cornell University.Research partially supported by NSF Grant IRI-8905166 and partially supported by the U.S. Army Research Office through the Mathematical Sciences Institute of Cornell University.  相似文献   

    10.
    Nested expressions in logic programs   总被引:2,自引:0,他引:2  
    We extend the answer set semantics to a class of logic programs with nested expressions permitted in the bodies and heads of rules. These expressions are formed from literals using negation as failure, conjunction (,) and disjunction (;) that can be nested arbitrarily. Conditional expressions are introduced as abbreviations. The study of equivalent transformations of programs with nested expressions shows that any such program is equivalent to a set of disjunctive rules, possibly with negation as failure in the heads. The generalized answer set semantics is related to the Lloyd–Topor generalization of Clark’s completion and to the logic of minimal belief and negation as failure. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

    11.
    In this paper, it is shown that a three-valued autoepistemic logic provides an elegant unifying framework for some of the major semantics of normal and disjunctive logic programs and logic programs with classical negation, namely, the stable semantics, the well-founded semantics, supported models, Fitting's semantics, Kunen's semantics, the stationary semantics, and answer sets. For the first time, so many semantics are embedded into one logic. The framework extends previous results—by Gelfond, Lifschitz, Marek, Subrahmanian, and Truszczynski —on the relationships between logic programming and Moore's autoepistemic logic. The framework suggests several new semantics for negation-as-failure. In particular, we will introduce the epistemic semantics for disjunctive logic programs. In order to motivate the epistemic semantics, an interesting class of applications called ignorance tests will be formalized; it will be proved that ignorance tests can be defined by means of the epistemic semantics, but not by means of the old semantics for disjunctive programs. The autoepistemic framework provides a formal foundation for an environment that integrates different forms of negation. The role of classical negation and various forms of negation-by-failure in logic programming will be briefly discussed.  相似文献   

    12.
    In this paper, it is shown that stable model semantics, perfect model semantics, and partial stable model semantics of disjunctive logic programs have the same expressive power with respect to the polynomial-time model-equivalent reduction. That is, taking perfect model semantics and stable model semantic as an example, any logic program P can be transformed in polynomial time to another logic program P' such that perfect models (resp. stable models) of P i-i correspond to stable models (resp. perfect models) of P', and the correspondence can be computed also in polynomial time. However, the minimal model semantics has weaker expressiveness than other mentioned semantics, otherwise, the polynomial hierarchy would collapse to NP.  相似文献   

    13.
    On stratified disjunctive programs   总被引:1,自引:0,他引:1  
    We address the problem of a consistent fixpoint semantics for general disjunctive programs restricted to stratifiable programs which do not recurse through negative literals. We apply the nonmonotonic fixpoint theory developed by Apt, Blair and Walker to a closure operatorT c and develop a fixpoint semantics for stratified disjunctive programs. We also provide an iterative definition for negation, called the Generalized Closed World Assumption for Stratified programs (GCWAS), and show that our semantics captures this definition. We develop a model-theoretic semantics for stratified disjunctive programs and show that the least state characterized by the fixpoint semantics corresponds to a stable-state defined in a manner similar to the stable-models of Gelfond and Lifschitz. We also discuss a weaker stratification semantics for general disjunctive programs based on the Weak Generalized Closed World Assumption.  相似文献   

    14.
    The paradigm of disjunctive logic programming(DLP)enhances greatly the expressive power of normal logic programming(NLP)and many(declarative)semantics have been defined for DLP to cope with various problems of knowledge representation in artificial intelligence.However,the expressive ability of the semantics and the soundness of program transformations for DLP have been rarely explored.This paper defines an immediate consequence operatro T^GP for each disjunctive program and shows that T^GP has the least and computable fixpoint Lft(P),Lft is,in fact,a program transformation for DLP,which transforms all disjunctive programs into negative programs.It is shown that Lft preserves many key semantics,including the disjunctive stable models,well-founded model,disjunctive argunent semantics DAS,three-valued models,ect.Thic means that every disjunctive program P has a unique canonical form Lft(P)with respect to these semantics.As a result,the work in this paper provides a unifying framework for studying the expressive ability of various semantics for DLP On the other hand,the computing of the above semantics for negative programs is ust a trivial task,therefore,Lft(P)is also an optimization method for DLP.Another application of Lft is to derive some interesting semantic results for DLP.  相似文献   

    15.
    Generalized disjunctive well-founded semantics (GDWFS) is a refined form of the generalized well-founded semantics (GWFS) of Baral, Lobo and Minker, to disjunctive logic programs. We describe fixpoint, model theoretic and procedural characterizations of GDWFS and show their equivalence. The fixpoint semantics is similar to the fixpoint semantics of the GWFS, except that it iterates over state-pairs (a pair of sets; one a set of disjunctions of atoms and the other a pair of conjunctions of atoms), rather than partial interpretations. The model theoretic semantics is based on a dynamic stratification of the program. The procedural semantics is based on SLIS refutations, + trees and SLISNF trees.  相似文献   

    16.
    Partial equilibrium logic (PEL) is a new nonmonotonic reasoning formalism closely aligned with logic programming under well-founded and partial stable model semantics. In particular it provides a logical foundation for these semantics as well as an extension of the basic syntax of logic programs. In this paper we describe PEL, study some of its logical properties and examine its behaviour on disjunctive and nested logic programs. In addition we consider computational features of PEL and study different approaches to its computation.  相似文献   

    17.
    This paper introduces active integrity constraints (AICs), an extension of integrity constraints for consistent database maintenance. An active integrity constraint is a special constraint whose body contains a conjunction of literals which must be false and whose head contains a disjunction of update actions representing actions (insertions and deletions of tuples) to be performed if the constraint is not satisfied (that is its body is true). The AICs work in a domino-like manner as the satisfaction of one AIC may trigger the violation and therefore the activation of another one. The paper also introduces founded repairs, which are minimal sets of update actions that make the database consistent, and are specified and “supported” by active integrity constraints. The paper presents: 1) a formal declarative semantics allowing the computation of founded repairs and 2) a characterization of this semantics obtained by rewriting active integrity constraints into disjunctive logic rules, so that founded repairs can be derived from the answer sets of the derived logic program. Finally, the paper studies the computational complexity of computing founded repairs.  相似文献   

    18.
    19.
    We study the following problem: given a class of logic programs ¢, determine the maximum number of stable models of a program from ©. We establish the maximum for the class of all logic programs with at most n clauses, and for the class of all logic programs of size at most n. We also characterize the programs for which the maxima are attained. We obtained similar results for the class of all disjunctive logic programs with at most n clauses, each of length at most m, and for the class of all disjunctive logic programs of size at most n. Our results on logic programs have direct implication for the design of algorithms to compute stable models. Several such algorithms, similar in spirit to the Davis-Putnam procedure, are described in the paper. Our results imply that there is an algorithm that finds all stable models of a program with n clauses after considering the search space of size O(3n/3) in the worst case. Our results also provide some insights into the question of representability of families of sets as families of stable models of logic programs.  相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号