首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
梯度结构对氧化铝陶瓷涂层抗冲击载荷性能的影响   总被引:3,自引:0,他引:3  
梯度结构陶瓷涂层以其优异的抗热震性表现出巨大的工程应用前景。为推动梯度陶瓷涂层在机械零件表面强化上的应用,采用“三明治”式梯度结构形式,建立镍基氧化铝梯度陶瓷涂层在冲击载荷作用下有限元模型,分析冲击载荷作用下涂层的力学性能,以及梯度层的结构形式、厚度及层数等参数对涂层的力学性能影响。结果表明:较无梯度结构陶瓷涂层相比,梯度结构能有效减缓涂层与基体结合面上的应力突变,涂层内部最大Mises应力明显降低,合理的梯度结构能改善涂层内部Mises应力分布,改变应力分布特征,减缓表面陶瓷涂层的冲击应力,从而防止陶瓷涂层在冲击载荷作用下脱落。最后对制备层状结构梯度陶瓷涂层时,如何进行梯度层结构设计进行了探讨,并提出了采用0.25次方幂指数梯度结构,得出10层中间层就可有效减缓冲击载何、降低Mises应力突变的结论。  相似文献   

2.
采用幂指数描述"三明治"式梯度结构形式,建立镍基氧化铝梯度陶瓷涂层在静态接触集中力载荷作用下有限元模型,分析静态接触集中力载荷作用下涂层的Mises应力分布,以及梯度层的厚度、中间层数及结构形式对涂层的Mises应力分布及最大Mises应力发生位置的影响。结果表明:梯度结构对接触区Mises应力大小及分布影响不大,但影响最大Mises应力发生位置;合理的梯度结构能避开最大Mises应力发生在表面强化区及梯度区中,防止陶瓷涂层在接触载荷作用下疲劳脱落。制备层状结构梯度陶瓷涂层时,采用氧化铝层厚度20μm、线性梯度层厚度80μm、8层中间层,可改善Mises应力,适当避开最大Mises应力发生在梯度区。  相似文献   

3.
采用“三明治”式梯度结构形式,建立镍基氧化铝梯度陶瓷涂层在热载荷作用下有限元模型,利用弹塑性有限元分析方法,分析梯度层的结构形式、厚度及中间层数等参数对涂层热应力分布的影响。模型采用轴对称结构形式,梯度是由系列理想中间层叠加而成,并假定各层结构材料性能存在微小差别,各中间层材料性能描述符合混合准则要求。结果表明:同无梯度结构陶瓷层相比,梯度结构能有效减缓涂层与基体结合面上的剪应力突变,涂层结合部最大剪应力明显降低;合理的梯度结构能改善涂层内部轴向热应力及剪应力分布,改变热应力分布特征,降低陶瓷层与基体结合面上的剪应力,减少塑性变形,从而防止陶瓷涂层在温度变化时过大剪应力作用下脱落。探讨制备层状结构梯度陶瓷涂层时梯度层结构的设计,并提出采用8层中间层、20 mm厚线性梯度结构就可有效减缓剪应力的突变的结论。  相似文献   

4.
采用"三明治"式梯度结构形式,建立镍基氧化铝梯度陶瓷涂层在热载荷作用下有限元模型,利用弹塑性有限元分析方法,分析梯度层的结构形式、厚度及中间层数等参数对涂层热应力分布的影响。模型采用轴对称结构形式,梯度是由系列理想中间层叠加而成,并假定各层结构材料性能存在微小差别,各中间层材料性能描述符合混合准则要求。结果表明:同无梯度结构陶瓷层相比,梯度结构能有效减缓涂层与基体结合面上的剪应力突变,涂层结合部最大剪应力明显降低;合理的梯度结构能改善涂层内部轴向热应力及剪应力分布,改变热应力分布特征,降低陶瓷层与基体结合面上的剪应力,减少塑性变形,从而防止陶瓷涂层在温度变化时过大剪应力作用下脱落。探讨制备层状结构梯度陶瓷涂层时梯度层结构的设计,并提出采用8层中间层、2.0 mm厚线性梯度结构就可有效减缓剪应力的突变的结论。  相似文献   

5.
《机械强度》2015,(4):628-633
通过超声辅助振动的方式,用金刚石压头对PVD TiCrAlN涂层进行不同振幅下的高频冲击试验。采用扫描电子显微镜(SEM)和3D轮廓仪等对冲击后涂层的表面破坏形式和压痕形状进行检测,得出TiCrAlN涂层的抗冲击能力,分析了涂层冲击失效机理。结果表明:TiCrAlN涂层在受到冲击时产生侧向裂纹等失效形式;涂层在冲击载荷下受到的最大拉应力靠近冲击中心接触区边界;TiCrAlN涂层在高频冲击载荷作用下容易发生破坏,但是没有发生剥落,原因可能是:TiCrAlN涂层与基体界面处的结合力较好,涂层与基体界面的结合力影响了刀具涂层的抗冲击强度。  相似文献   

6.
采用热弹塑性有限元方法,对热障涂层多次热循环降温过程中由于热梯度和材料参数不匹配而产生的残余应力进行了数值模拟,分析了平面和曲面的界面形貌对界面残余应力的影响.结果表明,在相同材料参数情况下,陶瓷层与粘接层的界面形状对残余应力及结构稳定状态有显著的影响,凹凸不平的界面将会使界面残余应力发生突变,不利于增强界面结合强度和涂层结构的热稳定性.该结果对分析涂层寿命及失效机制有指导意义.  相似文献   

7.
针对以球壳和圆柱壳为基体的功能梯度压电涂层,由多场耦合控制方程和层间连续条件导出递推关系,建立了显式的力-电-热多场耦合解。对于多层功能梯度压电涂层,此解为精确解;对于连续功能梯度压电涂层,可将涂层分为若干层,只要层数取得足够大,所得的近似解将收敛于精确解。研究表明:压电效应对基体的应力影响可以忽略,但对涂层的应力影响非常显著;增加层数并不能有效降低最大应力,但增加层数可显著减小相邻层层间周向应力的突变幅度,减小层间应力集中;然而涂层与基体之间的界面径向应力却随层数的增大而使界面强度弱化。  相似文献   

8.
通过梯度液相烧结或中温反应烧结处理,热喷涂层具有很高的结合强度。采用线切割沿涂层/基体界面切成对称切口,两边黏结后直接拉伸的实验方法对此高强涂层抗拉结合强度进行评价。对应不同涂层材料和切口结构工艺参数,借助有限单元法对涂层/基体交界面上的应力分布及切口附近的应力集中进行了分析,为正确评价涂层/基体的结合强度提供了依据。  相似文献   

9.
基于列车车轮表面抗磨损的功能要求,划定列车车轮表面为抗磨损功能区,在功能区与车轮基体间设计合理的梯度复合结构,开展具有梯度复合结构的列车车轮设计方法研究。以Hertz接触理论为依据,采用ANSYS建立轮轨热-结构耦合模型,分析轮轨整体在温度载荷及静态接触作用下应力分布。分析梯度复合结构对列车车轮力学性能的影响。结果表明:与无梯度复合结构车轮相比,梯度复合结构能有效降低车轮表面抗磨区与基体间等效应力突变,改变列车车轮应力分布特征,从而防止抗磨区在热-结构耦合作用下脱落。基于文中特定工况下,提出当抗磨区厚度为1.0 mm时,列车车轮表面抗磨区与基体间采用厚度为2.0 mm,中间层为8层的线性梯度复合结构就可有效减缓结合面上等效应力突变的结论。  相似文献   

10.
功能梯度Al2O3涂层残余热应力分析   总被引:4,自引:1,他引:3  
Al2O3/316L功能梯度材料是一种聚变反应堆第一壁的候选材料。为避免制备过程中因材料之间热物理性能差别产生的热应力过大造成材料的失效,须对梯度材料进行合理的热应力缓和设计。运用有限元软件,分析成分分布指数、梯度涂层厚度和梯度层数目等参数对Al2O3/316L功能梯度材料残余热应力的影响。分析结果表明:体积分布指数p=1.0时所受热应力最小,涂层承受压应力作用;梯度层数为9时热应力缓和效果最好;梯度层厚度不宜过大;将非功能梯度材料与优化后的功能梯度材料的残余热应力进行比,结果显示:功能梯度材料缓和热应力效果十分显著。最后利用等离子喷涂方法制备了梯度涂层测试涂层残余应力,并与有限元结果进行对比,以验证模拟的准确性。  相似文献   

11.
聚苯硫醚/氟树脂梯度防腐蚀涂层的研究   总被引:1,自引:0,他引:1  
在碳钢表面制备了具有梯度结构的PPS/FEP复合防腐蚀涂层,采用拉开法测定了各涂层体系的结合强度。结果表明:PPS/FEP梯度防腐蚀涂层明显改善了单纯氟树脂涂层对金属的不粘性,PPS/FEP五层梯度结构涂层与钢基体的结合强度可达11.8MPa;电子探针分析结果显示,五层体系中各组分沿横截面呈连续梯度分布,有效加强了层问结合。  相似文献   

12.
等离子喷涂Fe3Al-Al2O3陶瓷梯度涂层   总被引:8,自引:0,他引:8  
用等离子喷涂方法制备了FeAl-Al2O3陶瓷梯度涂层,并对涂层的结合硬度、显微硬度及抗热震性进行了试验研究。结果表明,梯度涂层设计为成分的阶梯过滤,实现了成分和组织的连续梯度变化,没有明显的组织突变和宏观界面,梯度涂层的组织表现出宏观不均匀性和微观连续性的分布特征。其结合强度较高,涂层的显微硬度值在含75%Al2O3的区域达到最高值。基体与涂层的界面是基体-涂层体系中的薄弱环节。FeAl-Al2O3梯度涂层的800℃抗热震性优于Al2O3涂层。  相似文献   

13.
热障涂层是一种典型的脆性、非均质、多层结构的材料。服役过程中受热-力载荷的作用,将会导致涂层过早的剥落失效,其主要的失效形式为陶瓷层开裂和界面剥落失效。热障涂层的失效主要是微裂纹萌生、扩展及连通导致。利用声发射技术结合微观形貌观察,研究了拉伸载荷下热障涂层的失效过程,并识别热障涂层裂纹损伤模式。根据不同载荷下的微观形貌观察,研究拉伸载荷下热障涂层的失效过程;利用声发射特征参数分析法(如声发射事件数、幅值),将热障涂层的失效过程分为几个不同阶段,并结合形貌观察,建立声发射特征参数与裂纹损伤失效信息之间的联系;利用快速傅里叶变换(Fast Fourier transform,FFT)识别热障涂层的损伤模式。结果表明:热障涂层拉伸失效过程为裂纹首先在陶瓷层表面萌生,随后向陶瓷层/粘结层的界面处扩展,到达界面后,裂纹将沿着界面生长与扩展,最终导致热障涂层分层剥落;将热障涂层的失效过程分为四个阶段;频谱分析结果表明基体频率成分大约在0.020MHz,表面裂纹的频率成分在0.20~0.25MHz,界面裂纹的频率成分在0.15~0.20MHz。  相似文献   

14.
长期承受交变力与热冲击载荷作用的牵引电机轴承绝缘涂层会发生变色、氧化乃至龟裂,导致绝缘涂层的绝缘性能和结合强度等发生改变。以不同型号和涂层厚度的退役绝缘轴承为研究对象,进行温度、湿度交变循环下的轴承绝缘涂层性能试验、划痕试验和热-应力耦合仿真,结果表明:绝缘涂层厚度越大,轴承的整体绝缘性能越好;轴承边缘位置的涂层与基体结合的临界载荷值小于中心位置,边缘位置更容易发生失效,同一型号轴承随着绝缘涂层厚度增加,涂层与基体的临界载荷值减小,涂层与基体的结合强度下降;涂层边缘和中心处内外界面的等效应力差值均随涂层厚度的增加而增大,涂层厚度的增加不利于涂层与基体结合。  相似文献   

15.
采用离子源增强的多弧离子镀新技术,在硬质合金刀具表面制备了不同含Si层梯度结构的AlCrTiSiN梯度涂层,并对涂层组织结构、残余应力、结合强度、摩擦磨损以及铣削和钻削加工灰铸铁性能进行了详细的研究。结果表明:不同含Si层梯度结构的AlCrTiSiN涂层主要由固溶的(Al,Cr) N、(Al,Ti) N相和非晶态Si3N4相组成。其中,含Si层梯度变化最缓和的G3(Gradient 3)涂层具有较高的结合强度,较低的残余压应力、摩擦因数和磨损率。铣削和钻削试验显示,涂层刀具的切削磨损机理主要表现为磨粒磨损和粘着磨损。G3涂层降低了磨粒磨损,其刀具的铣削和钻削寿命均最高,这主要得益于其含Si层的梯度设计、适当的压应力(-3.8 GPa)以及良好的膜基结合强度。研究结果表明,通过对含Si层进行梯度设计可显著提高涂层刀具的切削性能。  相似文献   

16.
采用大气等离子喷涂(APS)技术在6061铝合金基体表面预制Ni5Al合金黏结层,再在黏结层上喷涂Al_2O_3-3%TiO_2陶瓷层,研究了涂层的物相组成、微观形貌、显微硬度、结合强度、耐磨性能和耐腐蚀性能,分析了其拉伸断裂机理。结果表明:陶瓷层的物相主要由α-Al_2O_3、γ-Al_2O_3和锐钛矿型TiO_2组成;黏结层与基体以及黏结层与陶瓷层均形成了机械结合,但黏结层与基体的结合界面更致密;与基体相比,涂层的显微硬度更高、耐腐蚀性能和耐磨性能更优;涂层的结合强度低于黏结层的,其拉伸断裂位置多在黏结层和陶瓷层之间的界面处以及陶瓷层内部,界面处的拉伸断裂形式为混合断裂,黏结层上的为韧性断口,陶瓷层上的为脆性断口。  相似文献   

17.
广泛应用于高温部件的热障涂层,其凹凸不平的界面形貌不仅影响界面的结合强度、应力分布,严重时甚至会导致涂层剥离、层裂和失效.文中针对正弦波形界面形貌的热障涂层,研究了界面尺寸(微坑深度、宽度和间距)对界面残余应力的影响.结果表明,界面几何形貌突变越严重,应力突变也随之加剧;不同的微结构尺寸影响因素对残余应力影响各不相同,其中微坑深度对残余应力的影响最为显著.  相似文献   

18.
刀具涂层在机械加工领域中的重要性日益凸显,涂层力学性能的表征方法随之将更加受到重视。显微硬度法、划痕法和静态压入法等评价方法可模拟涂层在静态力下的失效行为,但难以评价刀具涂层在动态切削力下的物理力学性能,如刀具涂层的抗冲击性能。利用自行研制的压电陶瓷驱动冲击试验机,对化学气相沉积TiN刀具涂层进行多次冲击试验,研究刀具涂层的抗多次冲击性能和失效机理,分析TiN刀具涂层抑制裂纹萌生和裂纹扩展的能力。研究结果表明,压电陶瓷驱动冲击试验机在相同试验条件下失效行为的重现性好,多次冲击试验可有效评价刀具涂层的抗多次冲击性能。随冲击次数增加,刀具涂层失效机理由内聚力失效向结合力失效转变。涂层裂纹萌生可用涂层开始氧化磨损时的冲击次数评判,涂层失效比例可作为涂层抑制裂纹扩展能力的评价标准。研究结果有助于刀具涂层抗多次冲击性能的评价和刀具涂层冲击失效机理的揭示,为刀具涂层后处理喷砂强化、涂层材料优选等提供理论支撑。  相似文献   

19.
利用弹塑性有限元和单纯形法求解弹塑性接触模型,分别模拟了屈服强度呈梯度变化的渗氮钢、未经处理的匀质材料和硬涂层材料粗糙表面的弹塑性接触行为。与未经处理的匀质材料相比,渗氮钢可承受更大接触载荷。在相同载荷作用下,渗氮钢表面粗糙峰接触面积较小,平均间距较大,接触体内材料不易发生屈服,从而显著提高接触性能。和硬涂层材料相比,渗氮钢接触体内等效von Mises应力分布平缓,没有应力突变。最后讨论了渗氮层和硬涂层的厚度对粗糙表面接触特性的影响。  相似文献   

20.
星载设备遭受的冲击振动环境恶劣,其结构和元器件极易出现由于过大的冲击而导致的结构破坏、功能失效等动力学问题。为了减小星载设备过大的冲击振动响应,提高其抗冲击安全性,本文基于结构有限元方法建立了某星载设备的结构动力学模型,运用大质量法进行了模态分析和冲击谱分析;基于模态分析和冲击谱分析的结果对结构的薄弱环节进行了改进设计。分析结果表明,结构改进设计后,以结构增重仅1.03%的微小代价使结构基频提高了14.7%,最大Mises应力响应降低了8.73%,满足了结构强度的要求,验证了修改方法的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号