首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LF快速造白渣工艺分析   总被引:4,自引:2,他引:2  
从LF造渣的目的及造渣的难点出发,分析了脱氧、渣碱度(R)、渣量及渣成分对精炼效果的影响。通过对LF精炼实绩的综合分析认为:出钢炉渣改质、LF前期快速升温是快速造渣的前提条件;强搅拌、合理渣系是LF白渣脱硫的必要条件;控制白渣粘度、软搅强度和时间是保证精炼渣吸浮夹杂的基本条件;控铝钢的合理渣成分为w(CaO)=55%~60%;w(SiO2)=10%~17%;w(Al2O3)=15%~22%;w(T.Fe+MnO)2.0%;渣量为8.0~12.0kg/t,综合碱度为1.9~2.3时精炼效果较佳。  相似文献   

2.
通过工业试验研究了Q345钢在钢包精炼过程和RH处理过程中夹杂物成分的变化。结果表明:通过与高碱度、低氧化性渣的反应,钢水中的大部分Al2O3夹杂物转变为具有较低熔点的CaO-Al2O3-MgO夹杂物。研究了RH处理后钙的加入量对夹杂物成分的影响。结果表明:当钢包顶渣的成分控制在w(CaO)=50%~55%、w(CaF2)=5%~8%、w(Al2O3)=25%~30%、w(SiO2)=5%~8%、w(MgO)=5%~10%、w(FeO)<1%,经过钢包精炼和RH处理,每吨钢水中加入0.12 kg钙后,钢水中夹杂物的平均成分处于低熔点(≤1 500℃)区。  相似文献   

3.
邓叙燕  苏笃星  马建超  金红军  冯健 《炼钢》2012,28(4):13-15,19
通过工业试验对低碳冷镦钢的LF精炼渣成分进行了优化。试验结果表明:适合于冶炼低碳冷镦钢的精炼渣成分为w(CaO)=50%~55%、w(Al2O3)=30%~35%、w(CaF2)=5%~10%、w(SiO2)<5%、w(MgO)<5%、w(FeO)<1%;LF精炼过程可将钢水中w(S)从389×10-6降到50×10-6,w(T.O)从54.0×10-6降到21.1×10-6。当钢水中w(S)<50×10-6,钙处理后夹杂物中平均w(S)<1.9%。将优化后的工艺应用于低碳冷镦钢的批量生产后,精炼渣料消耗降低了6.5 kg/t,吨钢成本降低了10元以上。  相似文献   

4.
分析了低硅、低硫铝镇静钢精炼过程中回硅的原因,并提出了改善措施.认为精炼渣中SiO2含量及其氧化性是增硅的主要原因.通过加强转炉终点钢水温度、顶渣成分和下渣量控制,并优化精炼渣成分和脱氧过程,控制碱度在8~12,w(CaO)为50% ~60%、w(Al2 O3)为20% ~30%、w(SiO2)为4% ~8%、w(Mg...  相似文献   

5.
 根据冶金熔体的共存理论,计算了CaO-MgO-MnO-FeO-SiO2-Al2O3六元渣系各组元的作用浓度。结合生产实际数据,建立了LF精炼过程中精炼渣成分和w[Al]之间氧化还原反应的数学模型,计算了精炼渣成分对w[Al]的影响。结果表明,LF精炼过程中w[Al]受w[Si]、w(FeO)联合控制。低碱度、低Al2O3含量的精炼渣对控制w[Al]有利,如果精炼渣碱度控制在0. 9,Al2O3含量(质量分数,下同)控制在3%以下,则可以将w[Al]控制在6×10-6以下。适当提高FeO含量有利于降低w[Al]。  相似文献   

6.
程子建  郭靖  程树森 《钢铁》2012,47(10):45-51
 利用热力学计算软件FactSage确定了精炼渣中MgO质量分数合理范围为4%~8%,以6%最佳。由工业取样结果结合FactSage分析了1873K时SiO2-CaO-Al2O3-6%MgO准三元系液相区及CaO饱和的固液两相区渣-钢平衡。结果表明:高碱度高w(CaO)/w(Al2O3)(C/A)精炼渣有利于钢液的低氧低硫和低硅控制,但并非造得越“白”越好,相反过高的CaO对脱氧和硅含量控制不利。通过钢渣平衡分析得到了酒钢SPCC精炼渣优化成分范围(质量分数)为:CaO为50%~55%,Al2O3为30%~36%,SiO2为1%~6%,MgO为4%~8%,6%为最佳,碱度为9.0~14.0,w(CaO)/w(Al2O3)为1.5~1.8,实验室渣-钢平衡试验和工业生产结果均验证了优化的渣系较原渣系精炼效果更加优越,能够同时降低钢中总氧、硫和硅含量,也能有效控制钢中夹杂物的成分。  相似文献   

7.
 研究了某厂冶炼20CrMnTiH钢所用精炼渣的成分变化对钢液中w(T[O])与夹杂物成分的影响。基于Factsage软件探讨了精炼渣成分变化对钢液中w(T[O])的影响机制,指出精炼渣碱度R、w(CaO)/w(Al2O3)以及MI指数是通过改变渣中的Al2O3活度与CaO活度,提高精炼渣的“Al2O3”容量,以达到降低w(T[O])的目的,并在此基础上提出了适合冶炼20CrMnTiH钢的精炼渣系成分(质量分数):CaO 50%~55%,Al2O3 30%~35%,SiO2 6%~8%,MgO 5%~8%,其他不超过3%。通过工业试验发现,使用此渣系后铸坯中的w(T[O])降至10×10-6。  相似文献   

8.
在实验室小型试验炉内,用CaO-Al2O3-SiO2基精炼渣进行了钢水脱硫的试验,主要研究了精炼渣碱度、渣中Al2O3和CaF2对钢水脱硫的影响.结果表明:精炼渣碱度在2.85~3.45时,脱硫率在80%以上;精炼渣中w(Al2O3)=24%时,脱硫率为83.7%;随精炼渣中CaF2含量的增加,脱硫率先增大后降低.最佳精炼渣组成为:w(CaO)/w(SiO2)=3.0、w(CaF2) =7%、w(MgO)=6%、w(Al2O3)=24%.  相似文献   

9.
采用热力学软件FactSage计算分析了精炼渣成分、Als含量、精炼温度对钢水中镁含量的影响,并通过试验对计算结果进行验证。结果表明:在1 600℃,随着精炼渣碱度的升高以及渣中Al2O3、FeO含量的降低,钢水中Mg含量增加;随着渣中MgO含量的升高,钢水中Mg含量先升高后降低,当渣中w(MgO)为8%时,钢水中w(Mg)达到最大值11.9×10-6;而w(Al2O3)为30%,碱度为15时,钢水中w(Mg)达到最大值11.9×10-6。  相似文献   

10.
易操  朱荣  董凯  申景霞  李猛 《钢铁研究》2010,38(1):12-14,37
基于某钢厂现阶段LF精炼渣系脱硫效果差等问题,结合精炼渣脱硫机理进行实验研究。通过拟出10种精炼渣配方并对炉渣性能及钢中脱硫进行分析。研究发现,当精炼渣成分w(CaO)为45%~50%,w(SiO2)为18%~20%,w(Al2O3)为17%~21%,w(MgO)为9%~13%时脱硫效果较好,满足GCr15钢中脱硫要求。工业试验初步取得良好效果,为LF精炼渣系深脱硫提供依据。  相似文献   

11.
 为了实现LF热态钢渣的循环利用,对目前武钢LF热态钢渣两次循环利用工艺中精炼渣的组成、脱硫能力及吸收夹杂能力的变化进行了分析研究。结果表明,LF热态钢渣循环利用后钢水的脱硫率可以达到90%以上,精炼终点w([S])可以达到0.001%的水平;相对于未循环工艺,钢中w(T[O])减少17.50×10-6,w([N])减少17.00×10-6,夹杂物数量减少4.47个/mm2。根据两次热循环利用结果得出:通过控制回收的渣量及补加石灰的量,可保证循环后初始炉渣中的w((S))小于0.20%,终渣碱度(w(CaO)/w(SiO2))在12.00~20.00范围,w(CaO)/w(Al2O3)为1.75~2.00,从而使精炼渣的脱硫效率、w((S))/w([S])不受循环次数的限制。  相似文献   

12.
曾亚南  孙彦辉  蔡开科  徐蕊 《钢铁》2014,49(9):38-43
 基于BOF→RH→CSP生产工艺,研究了RH精炼过程钢中夹杂物类型演变及MgO?Al2O3夹杂物形成规律,同时对MgO?Al2O3夹杂物的形成条件进行了热力学计算,借助CFD数值模拟软件研究了RH精炼过程卷渣行为。研究发现,RH精炼过程20和30 min时,[w([MgO])/w([Al2O3])]为0.005~0.020,未发现MgO?Al2O3夹杂物;RH出站后夹杂物[w([MgO])/w([Al2O3])]为0.3~0.5,且RH精炼结束后MgO?Al2O3夹杂物占夹杂物总量的58.4%;另外,RH精炼过程钢液表面速度CFD模拟结果为0.57 m/s,大于临界卷渣速度0.45 m/s,且顶渣成分与夹杂物成分相近,存在卷渣现象。热力学计算表明,钢液与炉渣平衡时钢中[w([Al])]为0.31%~0.37%,[w([Mg])]为0.000 24%~0.000 28%,在MgO?Al2O3生成区域之内。减少RH处理过程卷渣,浇铸过程下渣及控制顶渣和包衬相中MgO质量分数可抑制MgO?Al2O3夹杂物形成。  相似文献   

13.
结合生产中LF渣的典型成分,对LF渣返回利用时的脱硫性能及其影响因素进行了研究,探讨了炉渣的初始w(S)、w(Al2O3),钢水的初始w(S)变化对脱硫的影响.实验结果表明,钢水w(Als)=0.025 %~0.033 %时,采用模拟的LF返回精炼渣,可以实现对钢水的脱硫.在炉渣初始w(S)>0.61 %时,随渣中硫含量的增大,脱硫率快速下降,w(Al2O3)<25 %时对脱硫的影响不大.在实际应用中,采用精炼终渣部分返回的模式,可以保证LF精炼的脱硫要求.  相似文献   

14.
LF埋弧精炼渣的研究   总被引:4,自引:0,他引:4  
唐萍  文光华  漆鑫  陈浩  周建  黄鼎  龙贻菊  胡兵  潘永忠 《钢铁》2004,39(1):24-26
研究的埋弧精炼渣系能满足重钢 L F埋弧精炼的要求。平均脱硫率为 70 .4 9% ,钢板探伤合格率提高 2 .5 0 % ,- 4 0℃横向冲击值提高近 1倍。精炼渣合适的成分及物性控制范围为 :碱度 3.4~ 4 .2、(Fe O) <1%、(Al2 O3) 16 %~ 2 2 %、(Mg O) 7%~ 10 %、熔点 136 0~ 1380℃、粘度 0 .4 0~ 0 .4 5 Pa· s、表面张力 (490~ 5 2 0 )× 10 - 3N/ m。  相似文献   

15.
姜敏  陈斌  曾涛  包萨日娜  王新华 《钢铁》2007,42(9):45-48
对EAF-LF-VD-CC工艺生产汽车半轴用非调质钢试验过程中钢水及铸坯洁净度变化规律进行了研究.为了将铸坯w(T[O])控制在0.001 0%以下,LF精炼渣碱度应该控制在4.0或更高,渣中w(FetO) w(MnO)控制在1%以下,精炼过程中应控制吹氩量,避免渣中w(FetO) w(MnO)升高;VD精炼过程应增加软吹氩时间以促进夹杂物上浮,喂入Si-Ca后应及时加入CaO防止渣碱度偏低,渣中w(SiO2)应控制在10%或以下;中间包应做好保护浇注,适当降低连铸过程中的拉坯速度,减轻并防止中间包注流区和浇注区钢水卷渣.  相似文献   

16.
《炼钢》2017,(4)
为进一步降低轴承钢的硫含量,从脱硫热力学和动力学两方面着手,通过现场试验数据分析,对影响脱硫的炉渣成分、碱度、硫容量和w(Ca)/w(Al)等主要因素进行讨论,提出了LF精炼工艺优化措施。结合工业优化试验,结果表明:控制精炼渣w(SiO_2)≤5%,R≥10,w(FeO+MnO)≤0.5%,w(CaO)/w(Al_2O_3)=1.6~1.7时,轴承钢精炼脱硫率能达到94%,w(S)≤20×10~(-6)。  相似文献   

17.
 以CaO-CaF2复合渣系为脱硫剂,在RH精炼过程采用真空投入法进行高牌号无取向电工钢深脱硫工业试验,采用KTH模型计算分析了RH炉渣成分对硫容量CS的影响。研究结果表明,炉渣成分控制在 w((CaO))/w((SiO2))为5~7, w((CaO))/w((Al2O3))为1.5~1.8, w((Al2O3))为25%~30%,w((FeO+MnO))<5%,脱硫剂加入量为6~8kg/t时,钢中硫质量分数从平均0.0031%降低到0.0018%,最高脱硫率达到47.1%,平均脱硫率为41.7%。  相似文献   

18.
姜仁波 《炼钢》2019,35(4):28-31
分析了因RH钢包渣氧势高而向钢水传氧对钢水纯净度的影响。通过计算确定出合理的RH进站溶解氧位,确保与之平衡的顶渣FeO活度在较低的范围内。另外分析了顶渣成分对顶渣FeO活度系数的影响,确定了合理的炉渣成分:转炉出钢结束后至RH脱碳期间,IF钢钢包顶渣w(SiO_2)=4%~5%,w(MgO)=8%~9%,w(CaO)/w(Al_2O_3)控制在1.8~2.2;RH脱氧结束后,确保RH结束渣w(CaO)/w(Al_2O_3)=1.3~1.5,既可以减少钢渣间传氧,又可以确保顶渣吸附夹杂的能力。  相似文献   

19.
《炼钢》2015,(4)
用氮氧分析、荧光分析、扫描电镜-能谱等方法 ,对某厂"100 t EAF→LF→VD→CC"工艺流程条件下生产的弹簧钢进行了T.O含量、精炼渣成分以及铸坯中夹杂物的形貌、尺寸和成分分析;在此基础上,应用FactSage热力学计算软件进行热力学计算,对精炼渣进行优化研究。结果表明:优化后的精炼渣系的主要成分为:w(CaO)=36%~44%,w(SiO2)=36%~44%,w(Al2O3)10%,w(MgO)=9%~11%;碱度R=0.8~1.2,同时使用该渣系进行工业试验,夹杂物的塑性得到极大的改善,进入低熔点区的夹杂物比例由改进前的12.5%增加至75%,且平均尺寸减小到1.48μm,未观察到大于2.5μm的夹杂物。  相似文献   

20.
对CSP厂钢包LF炉脱硫的反应机理进行了分析,在此基础上,研究了炉渣成分对硫分配比的影响、钢水硫含量的变化情况。提出了最佳脱硫渣成分控制范围w(CaO):52%~57%、w(Al_2O_3):35%~40%、w(SiO_2)≤6%,w(FeO+MnO)≤1%;通过生产控制,钢包炉深脱硫后成品w(S)≤0.004%,满足了生产低硫、超低硫钢种的需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号