首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A salt gradient solar pond is a large scale solar collector having built-in heat storage capability. This is in part due to the mass of water in the pond and in part to the ground beneath the pond. Some scholars have already paid attention to the ground thermal storage. In this work, emphasis has been put upon the un-steady state performance and the transient behavior of SGSPs. A simple computer simulation method is adopted to study the ground heat loss and the heat recovery rate under varied combinations of the depth of the underground water table, the thickness of the lower convective zone, the heat withdrawal pattern, and the thermal properties of the soil. The effect of an insulation layer between the pond and the ground is also examined.  相似文献   

2.
This paper deals with a method and the result of the spectroscopic calculation on heat balance of a salt-gradient solar pond under the conditions of spectral solar radiation. Furthermore, reflection of the ray incident upon the surface of the pond water, refraction of the rays within the salt-water layer and diffusion of salt in the pond water are considered. On the other hand, in order to make a clear mechanism of the heat collection and heat storage of the solar pond, we conducted an indoor experiment and a numerical analysis on a small scale model of the salt-gradient solar pond with 2 m2 surface area and 1.6 m depth, under the incident rays from a Xe-lamp solar simulator. According to the above experimental analysis, we made a simulation model of thermal performance for a solar pond and carried out the calculation from the heat balance. We found that the simulation calculations correspond well to the experimental results, so that our thermal simulation model and method might be correct. We also did the thermal calculation by changing the incident rays from a Xe-lamp into natural ray (Moon’s spectrum) and Halogen lamp. As a result, it was found that the temperature distributions in the solar pond were notably different due to spectral characteristics of the incident ray. Therefore, the spectroscopic consideration for thermal performance of any solar pond is necessary to obtain a correct solution under the spectral incidence with special wavelength distributions.  相似文献   

3.
A solar pond for annual cycle solar energy collection and storage was studied at The Ohio Agricultural Research and Development Center (OARDC), Wooster. It has been used as a thermal energy source for greenhouse heating. A brine-source electric-power-driven heat pump was incorporated into the heat extraction system. Initial results of the field studies indicated that the combined system improved the effectiveness of both the heat pump and the solar pond by enabling a larger temperature cycle within the solar pond.

To study the operation of such a system, a computer simulation model for the heating system was developed. The results of simulations were used to establish a relationship between the system performance and the present design and for sizing the solar energy collection and storage system. Also, the effect of a polystyrene pellet nighttime insulation for the greenhouse was simulated. Increasing the surface area of the OARDC pond was found to be less effective than changing its depth. Thr results showed that a 5 m deep pond with 1.0 m gradient zone significantly improved the overall performance of the system when used as a heat source for a heat pump. Based on the detailed experimental and computer simulation performance analysis, the solar pond-assisted heat pump system has the potential of improved performance compared with convential air source heat pumps.  相似文献   


4.
The effects of following parameters on the performance of saturated solar ponds are studied: thickness of upper convective zone, nonconvective zone, and lower convective zone; starting time of the pond; water table depth below the pond; ground thermal conductivity; transmissivity of salt solution; incident radiation; ambient air temperature, humidity, and velocity; thermophysical properties of salt solution; pond bottom reflectivity; convection, evaporation, radiation, and ground heat losses; temperature and rate of heat removal; type of salt. Magnesium chloride and potassium nitrate salt ponds located at Madras (India) are considered for the parametric study. A comparison is also made with an unsaturated solar pond.  相似文献   

5.
A large-scale solar pond with salty water was constructed in the suburbs of Kitami in 1985. Its performance has been measured and analyzed by the authors after that. The solar pond body is circular of 44 m diameter, and the pond water is of 3 min total depth. After, 15 months, the depth of the salt gradient zone (S.G.Z.) was thinned by 10 cm in the top and by 20 cm in the bottom due to convection of the top and bottom zones. The temperature in the convective storage zone (C.S.Z.) reached 70°C, its maximum, at the beginning of September in 1985, however, it was not as high in 1986 due to contamination of the pond water. The temperature of the storage zone was reduced from November to April due to ice covering on the pond surface. The collected heat yielded largely and the collection efficiency reached more than 30% in summer, but decreased to negative values in winter. The thermal performance of the solar pond was predicted by a simulation calculation, and the calculated result compared well with the measurements.  相似文献   

6.
John R. Hull 《Solar Energy》1985,35(3):211-217
An analytical solution is presented that calculates the heat loss from the bottom of a solar pond (or any heated object) to a soil that contains a moving water table. The water table is treated as a fluid slab moving as a slug flow in one dimension. Edge effects and horizontal heat conduction are ignored. Both steady-state and time-dependent solutions are presented. Results are presented in terms of an effectiveness ratio—the actual heat flux divided by the steady-state heat flux resulting from a constant temperature heat sink at the depth of the water table. The only water-table parameter that strongly affects the effectiveness is the fluid capacity rate. Thus, for any potential solar pond site, a measurement of the mass flow rate of the water table combined with knowledge of the soil thermal properties will allow a good estimation of the ground heat loss expected over the lifetime of the pond.  相似文献   

7.
This paper deals with the experimental investigation of a magnesium chloride saturated solar pond and its performance evaluation through energy and exergy efficiencies. The solar pond system is filled with magnesium chloride containing water to form layers with varying densities. A solar pond generally consists of three zones, and the densities of these zones increase from the top convective zone to the bottom storage zone. The incoming solar radiation is absorbed by salty water (with magnesium chloride) which eventually increases the temperature of the storage zone. The high-temperature salty water at the bottom of the solar pond remains much denser than the salty water in the upper layers. Thus, the convective heat losses are prevented by gradient layers. The experimental temperature changes of the solar pond are measured by using thermocouples from August to November. The densities of the layers are also measured and analysed by taking samples from at the same point of the temperature sensors. The energy and exergy content distributions are determined for the heat storage zone and the non-convective zone. The maximum exergy destructions and losses appear to be 79.05 MJ for the heat storage zone and 175.01 MJ for the non-convective zone in August. The energy and exergy efficiencies of the solar pond are defined as a function of solar radiation and temperatures. As a result, the maximum energy and exergy efficiencies are found to be 27.41% and 26.04% for the heat storage zone, 19.71% and 17.45% for the non-convective zone in August, respectively.  相似文献   

8.
In this study, a theoretical model which is validated experimentally is used to predict the performance of a shallow solar pond in Tehran. The theoretical and experimental results show good agreement. The maximum hourly water temperature of the shallow solar pond is found to lag behind the maximum hourly ambient temperature and solar radiation by 1–2 and 3.5 h, respectively.The maximum monthly daily-average water temperature follows the trend of the monthly daily-average solar radiation but leads the monthly daily-average ambient temperature in one month. The shallow solar pond, with 10-cm water depth, cannot be used as a thermal source in winter but can be used for many thermal applications in summer. With 5-cm water depth, the shallow solar pond can be used as a thermal source for low heat applications in most of the winter but can be used, even for moderate applications, where high temperature up to 95°C is obtained in summer. Using a reflector makes the 10-cm depth shallow solar pond useful for low heat applications and the 5-cm depth useful for moderate heat applications in most of the winter. Using a double cover top glazing is found to have no effect on improving the system performance.  相似文献   

9.
M. Taga  K. Fujimoto  T. Ochi 《Solar Energy》1996,56(3):267-277
A new type of nonsalt solar pond was investigated by field testing. The roof of the solar pond was formed using a transparent double film. Three kinds of tests were carried out under the following conditions: (1) insulating pellets were packed between the layers of the transparent double film of the roof at sunset; (2) the water surface of the pond was insulated using only the two transparent films; (3) the water surface of the pond was covered by the double film with the top surface blackened on which solar energy can be collected, while pond water was circulated using a solar cell powered submerged water pump. The warm water stored in the solar pond by the above methods was utilized as a heat source for a gas engine powered heat pump used to heat a greenhouse. In this report, the results of the field tests on the above solar ponds and greenhouse heating system are discussed. Also the utility of a combination plant using a solar pond and underground borehole storage system is evaluated.Important conclusions on performance are as follows: (1) collection efficiencies of these solar ponds become 9–54% corresponding to the weather conditions and pond temperatures; (2) maximum temperature of the pond water under weather conditions at Osaka is about 80°C; (3) the solar pond can be effectively utilized for heating a greenhouse; (4) the combination plant using the solar pond and the underground storage layer can store heat of 1119 MJ m−2 yr−1.  相似文献   

10.
This paper reports on an investigation of a passive system comprising a non-convective pond placed on the roof of a building in order to heat the building. Periodic analysis of the solar heat transfer process in the system, which is exposed to solar radiation and atmospheric temperature on one side and is in contact with room air at constant temperature (corresponding to an air-conditioned room) on the other, indicates that this system provides better thermal storage than a thick concrete roof or the convective roof pond system. In sunny winter climates, such a system can provide 100% of all heating needs. A viscosity stabilised non-convective pond of shallow depth (10–15 cm) is envisaged to be the most suitable for the present application.  相似文献   

11.
Solar ponds are shallow bodies of water in which an artificially maintained salt concentration gradient prevents convection. They combine heat collection with long-term storage and can provide sufficient heat for the entire year. We consider the absorption of radiation as it passes through the water, and we derive equations for the resulting temperature range of the pond during year round operation, taking into account the heat that can be stored in the ground underneath the pond. Assuming a heating demand of 25000 Btu/degree day (Fahrenheit), characteristic of a 2000 ft2 house with fair insulation, and using records of the U.S. Weather Bureau, we carry out detailed calculations for several different locations and climates. We find that solar ponds can supply adequate heating, even in regions near the arctic circle. In midlatitudes the pond should be, roughly speaking, comparable in surface area and volume to the space it is to heat. Under some circumstances, the most economical system will employ a heat pump in conjunction with the solar pond. Cost estimates based on present technology and construction methods indicate that solar ponds may be competitive with conventional heating.  相似文献   

12.
Modeling and testing a salt gradient solar pond in northeast Ohio   总被引:1,自引:0,他引:1  
A dynamic computer model of a salt gradient solar pond as an annual-cycle solar energy collection and storage system was developed. The model was validated using experimental results of a solar pond located at the Ohio Agricultural Research and Development Center (OARDC), Wooster, Ohio. The model was then used to analyze the transient energy phenomena which occurred within the storage zone of the pond. Generalized daily weather functions used were the incident solar radiation upon a horizontal surface, the daylight length and the daily maximum and minimum ambient air temperatures.Various simulations were performed to evaluate the OARDC solar pond and to improve its overall effective capacity of heat storage. It was found that 4–6 weeks variation in start-up time and 5–10°C variation in start-up temperature had no effect on late summer peak storage temperature. The pond operated at a 20 per cent collection efficiency with a 1.5-m deep gradient. Insulating the pond in the winter would be beneficial if no heat was removed during the fall. Reducing the gradient zone thickness to 1 m and enlarging the storage zone could improve the performance of a 3-m deep pond. The model could be used to predict and analyze the transient thermal response of large storages associated with solar heating system for a variety of purposes and climatic conditions.  相似文献   

13.
The present study deals with heat storage performance investigation of integrated solar pond and collector system. In the experimental work, a cylindrical solar pond system (CSPS) with a radius of 0.80 m and a depth of 2.0 m and four flat plate collectors dimensions of 1.90 m × 0.90 m was built in Cukurova University in Adana, Turkey. The CSPS was filled with salty water of various densities to form three salty water zones (Upper Convective Zone, Non-Convective Zone and Heat Storage Zone). Heat energy collected by collectors was transferred to the solar pond storage zone by using a heat exchanger system which is connected to the solar collectors. Several temperature sensors connected to a data acquisition system were placed vertically inside the CSPS and at the inlet and outlet of the heat exchanger. Experimental studies were performed using 1, 2, 3 and 4 collectors integrated with the CSPS under approximately the same condition. The integrated solar pond efficiencies were calculated experimentally and theoretically according to the number of collectors. As a result, the experimental efficiencies are found to be 21.30%, 23.60%, 24.28% and 26.52%; the theoretical efficiencies to be 23.42%, 25.48%, 26.55% and 27.70% for 1, 2, 3 and 4 collectors, respectively. Theoretical efficiencies were compared with the experimental results and hence a good agreement is found between experimental and theoretical efficiency profiles.  相似文献   

14.
An analysis of a honeycomb-stabilized, saltless solar pond as a solar energy collector and long term (spanning seasons) storage system is presented. The solar pond is considered with a nonconvective zone made up of an oil layer and air honeycomb configuration. A heat flow model is developed using the two loss mechanisms (conduction and radiation). The efficiency of heat collection and the storage characteristics of the system are excellent for hot water production and process heat applications.  相似文献   

15.
This paper presents a periodic analysis of a three zone solar pond as a solar energy collector and long term storage system. We explicitly take into account the convective heat and mass flux through the pond surface and evaluate the temperature and heat fluxes at various levels in the pond during its year round operation by solving the time dependent Fourier heat conduction equation with internal heat generation resulting from the absorption of solar radiation in the pond water. Eventually, an expression, for the transient rate at which heat can be retrieved from the solar pond to keep the temperature of the zone of heat extraction as constant, is derived. Heat retrieval efficiencies of 40.0 per cent, 32.1 per cent, 28.3 per cent and 25.5 per cent are predicted at collection temperatures of 40, 60, 80 and 100°C, respectively. the retrieved heat flux exhibits a phase difference of about 30 to 45 days with the incident solar flux; the load levelling in the retrieved heat flux improves as the thickness of the non-convective zone increases. the efficiency of the solar pond system for conversion of solar energy into mechanical work is also studied. This efficiency is found to increase with collection temperature and it tends to level around 5 per cent at collection temperatures about 90°C.  相似文献   

16.
The use of solar ponds is becoming more attractive in today's energy scene. A major advantage of solar ponds over other collectors is the ability to store thermal energy for long periods of time. The solar pond comprises a hydraulic system subject to processes of heat and mass transfer. The design of this system and the related equipment requires a thorough knowledge of the pond heating-up process and expected thermohaline structure within the pond. The current study considers that convection currents in the pond are inhibited by the salinity distribution, and applies a finite difference implicit model in order to investigate the interaction among physical variables represented by various dimensionless parameters. Variables which are included in the analysis comprise the solar radiation input and absorption as it passes through the pond; diffusion and dispersion of heat within the pond; absorption of heat at the bottom of the pond; and withdrawal of heat from layers within the pond. The physical variables generate 3 dimensionless variables associated with the pond's heating-up process. A 4 dimensionless variable is associated with the heat utilization. The analysis represented in this paper concerns the interaction between these dimensionless parameters and its implications.  相似文献   

17.
A review of the development of the gel pond technology is presented. First, the emergence and growth of solar pond technology since the 1950's is described. The inherent problems encountered with the conventional salt gradient ponds are discussed, leading to the concept of the solar gel pond in which the salt gradient layer in the former is replaced by a transparent polymer gel. The major work in the first phase dealt with the experimental development of a polymer gel which met certain selection criteria. The criteria considered included transmissivity, stability of physical and chemical properties, high viscosity and other physical and optical properties. The gradual development of the polymer gel through an alternating process of testing and elimination and evaluation of relevant properties of the gel has been described. Modeling and optimization studies of the solar gel pond have been presented. Bansal and Kaushik's model for a salt gradient pond has been modified for a solar gel pond, and the results of the simulation are presented in a graphical form to serve as a quick reference for estimation of pond surface area, depth and flow rate for heat extraction depending on the extreme temperature required in the storage zone and the required heat load. Then, a cost-benefit economic analysis compares the economics of a solar gel pond with a conventional salt gradient pond. The construction of an experimental gel pond (18 m2) at The University of New Mexico is described, and the results of the study are summarized. Information on commercial scale ponds at Chamberino, New Mexico (110 m2), and in Albuquerque, New Mexico (400 m2), is provided. The review of the technology demonstrates the immense potential of the gel pond as a source of alternate energy for the years ahead.  相似文献   

18.
Ground heat losses from solar ponds are modelled numerically for various perimeter insulation strategies and several solar pond sizes. The numerical simulations are steady state calculations of heat loss from a circular or square pond to a heat sink at the outer boundaries of an earth volume that surrounds the pond on the bottom and sides. Simulation results indicate that insulation on top of the ground around the pond perimeter is rather ineffective in reducing heat loss, and that uninsulated sloping side walls are slightly more effective than insulated vertical side walls, except for very small ponds. The numerical results are used to derive coefficients for a semi-empirical equation describing ground heat loss as a function of pond area, pond perimeter and insulation strategy. Experimental results for ground heat loss and energy balance in the 400 m2 solar pond at the Ohio State University are reported. Analysis of this data, along with data on solar energy input, heat gain by the pond, heat loss through the gradient zone, and heat extraction from the pond yields a good energy balance. Numerical simulation of ground heat loss from this pond shows good agreement with the results obtained from pond measurements. Loss turns out to be large because of unexpectedly high values of earth thermal conductivity in the region.  相似文献   

19.
Reverse absorber type shallow solar ponds are proposed as being capable of attaining higher temperatures and still higher efficiencies than the conventional type due to convection suppression and elimination of top radiative losses. The theoretical thermal analysis and simulation of the performance of two configurations of the reverse absorber shallow solar pond (RASSP); one with the top insulated and the other with top exposed, are presented. The ensuing model equations were solved to obtain the desired performance parameters. For a pond depth of 0.10 m, results of the simulations show that water temperatures up to 70°C could be obtained in a RASSP with double glass covers, higher than could be gotten in either an RASSP with top insulation or a conventional SSP of equal depth. The effect of pond depth on the proportions of the radiation incident on the RASSP that is either collected as thermal energy or lost was studied. The average transmissivity-absorptivity products, (τα), overall heat loss coefficients, UL and optimal pond depths were also computed.  相似文献   

20.
A mathematical model with various parameters such as effective absorptivity-transmitivity product and total heat loss factor, including ground losses and angle of refraction, which are related to the physical properties and dimensions of the pond, is developed to study the thermal behaviour of salt gradient solar ponds at different operational conditions. A linear relation is found between the efficiency of the solar pond and the function (ΔT/H ). The convective heat loss, the heat loss to the atmosphere due to evaporation through the surface of the pond and ground heat losses have been accounted for in finding out the efficiency of the pond. The dependence of the thermal performance of the solar pond on the ground heat losses is investigated and minimized using low cost loose and insulating building materials such as dry dunes and, Mica powder and loose asbestos at the bottom of the pond. The ground heat losses are considerably reduced with the asbestos (loose) and the retention power of solar thermal energy of the pond increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号