首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organic–inorganic halide CH3NH3PbI3 (MAPbI3) has been the most commonly used light absorber layer of perovskite solar cells (PSCs); however, solution‐processed MAPbI3 films usually suffer from random crystal orientation and high trap density, resulting in inferior power conversion efficiency (PCE) with open circuit voltage (Voc) being typically below 1.2 V for PSC devices. Herein, for the first time an imidazole sulfonate zwitterion, 4‐(1H‐imidazol‐3‐ium‐3‐yl)butane‐1‐sulfonate (IMS), is applied as a bifunctional additive in regular‐structure planar heterojunction PSC devices to regulate the crystal orientation, yielding highly ordered MAPbI3 film and passivating the trap states of the film. Such a dual effect of IMS is fulfilled via coordination interactions between the sulfonate moiety of IMS with the Pb2+ ion and the electrostatic interaction between the imidazole of IMS with the I ion of MAPbI3. As a result, under a optimized IMS doping ratio of 0.5 wt%, the PSC device exhibits a significant increase in PCE from 18.77% to 20.84%, with suppressed current–voltage hysteresis and promoted ambient stability. Moreover, a high Voc of 1.208 V is achieved under a higher IMS doping ratio of 1.2 wt%, which is the highest Voc for regular‐structure MAPbI3 planar PSC devices based on TiO2 electron transport layer.  相似文献   

2.
Laminated multilayers of perovskite films with different optical and electronic characteristics will easily realize high‐performance optoelectronic devices because it is widely demonstrated that differential distribution of film properties in the vertical direction of devices plays particularly important roles in device performance. However, the existing laminated perovskite films are hardly prepared by a solution process because there is no solvent with sufficient selectivity of solubility for different perovskite materials. Here, it is demonstrated that aniline (AN) has a largely different solubility toward the perovskite MAPbI3 and the MAPbI3 blend with an additive of hydrochloride diethylammonium chloride. By using AN as the solvent in the perovskite precursor solution, two laminated perovskite layers with different crystal size and optical and electrical characteristics are achieved. Inverted perovskite solar cells with the laminated films as active layers achieve an averaged power conversion efficiency of 20.65% originating from the high VOC 1.112 V and fill factor of 80.8%. The devices maintain 98% efficiency after 400 h under 65% RH. This work provides a very simple and feasible method for production of laminated perovskite films to achieve high‐performance perovskite solar cells.  相似文献   

3.
For solar cell applications, Sn‐based hybrid perovskites have drawn particular interest due to their environmental friendliness. Here, a thin layer of C60 pyrrolidine tris‐acid (CPTA) is found essential for achieving high efficiency with planar solar cells of Sn‐based perovskites. As a result, a power conversion efficiency of 7.40% is achieved for {en}FASnI3 solar cells with a planar n–i–p architecture, and the device exhibits excellent stability in air. For the first time, highly efficient Sn‐based hybrid perovskite solar cells on n–i–p architecture are achieved. A Voc of 0.72 V is highlighted as the highest Voc ever reported for FASnI3 solar cells.  相似文献   

4.
Recombination via subgap trap states is considered a limiting factor in the development of organometal halide perovskite solar cells. Here, the impact of active layer crystallinity on the accumulated charge and open‐circuit voltage (Voc) in solar cells based on methylammonium lead triiodide (CH3NH3PbI3, MAPI) is demonstrated. It is shown that MAPI crystallinity can be systematically tailored by modulating the stoichiometry of the precursor mix, where small quantities of excess methylammonium iodide (MAI) improve crystallinity, increasing device Voc by ≈200 mV. Using in situ differential charging and transient photovoltage measurements, charge density and charge carrier recombination lifetime are determined under operational conditions. Increased Voc is correlated to improved active layer crystallinity and a reduction in the density of trap states in MAPI. Photoluminescence spectroscopy shows that an increase in trap state density correlates with faster carrier trapping and more nonradiative recombination pathways. Fundamental insights into the origin of Voc in perovskite photovoltaics are provided and it is demonstrated why highly crystalline perovskite films are paramount for high‐performance devices.  相似文献   

5.
This study demonstrates the formation of extremely smooth and uniform formamidinium lead bromide (CH(NH2)2PbBr3 = FAPbBr3) films using an optimum mixture of dimethyl sulfoxide and N,N‐dimethylformamide solvents. Surface morphology and phase purity of the FAPbBr3 films are thoroughly examined by field emission scanning electron microscopy and powder X‐ray diffraction, respectively. To unravel the photophysical properties of these films, systematic investigation based on time‐integrated and time‐dependent photoluminescence studies are carried out which, respectively, bring out relatively lower nonradiative recombination rates and long lasting photogenerated charge carriers in FAPbBr3 perovskite films. The devices based on FTO/TiO2/FAPbBr3/spiro‐OMeTAD/Au show highly reproducible open‐circuit voltage (Voc) of 1.42 V, a record for FAPbBr3‐based perovskite solar cells. Voc as a function of illumination intensity indicates that the contacts are very selective and higher Voc values are expected to be achieved when the quality of the FAPbBr3 film is further improved. Overall, the devices based on these films reveal appreciable power conversion efficiency of 7% under standard illumination conditions with negligible hysteresis. Finally, the amplified spontaneous emission (ASE) behavior explored in a cavity‐free configuration for FAPbBr3 perovskite films shows a sharp ASE threshold at a fluence of 190 μJ cm?2 with high quantum efficiency further confirming the high quality of the films.  相似文献   

6.
The origin of performance enhancements in p‐i‐n perovskite solar cells (PSCs) when incorporating low concentrations of the bulky cation 1‐naphthylmethylamine (NMA) are discussed. A 0.25 vol % addition of NMA increases the open circuit voltage (Voc) of methylammonium lead iodide (MAPbI3) PSCs from 1.06 to 1.16 V and their power conversion efficiency (PCE) from 18.7% to 20.1%. X‐ray photoelectron spectroscopy and low energy ion scattering data show NMA is located at grain surfaces, not the bulk. Scanning electron microscopy shows combining NMA addition with solvent assisted annealing creates large grains that span the active layer. Steady state and transient photoluminescence data show NMA suppresses non‐radiative recombination resulting from charge trapping, consistent with passivation of grain surfaces. Increasing the NMA concentration reduces device short‐circuit current density and PCE, also suppressing photoluminescence quenching at charge transport layers. Both Voc and PCE enhancements are observed when bulky cations (phenyl(ethyl/methyl)ammonium) are incorporated, but not smaller cations (Cs/MA)—indicating size is a key parameter. Finally, it demonstrates that NMA also enhances mixed iodide/bromide wide bandgap PSCs (Voc of 1.22 V with a 1.68 eV bandgap). The results demonstrate a facile approach to maximizing Voc and provide insights into morphological control and charge carrier dynamics induced by bulky cations in PSCs.  相似文献   

7.
Wide bandgap (WB) organic–inorganic hybrid perovskites (OIHPs) with a bandgap ranging between 1.7 and 2.0 eV have shown great potential to improve the efficiency of single‐junction silicon or thin‐film solar cells by forming a tandem structure with one of these cells or with a narrow bandgap perovskite cell. However, WB‐OIHPs suffer from a large open‐circuit voltage (Voc) deficit in photovoltaic devices, which is associated with the phase segregation of the materials under light illumination. In this work the photoinstability is demonstrated and Voc loss can be addressed by combining grain crystallization and grain boundary passivation, achieved simultaneously through tuning of perovskite precursor composition. Using FA0.17Cs0.83PbI3–xBrx (x = 0.8, 1.2 1.5, and 1.8), with a varied bandgap from 1.72 to 1.93 eV, as the model system it is illustrated how precursor additive Pb(SCN)2 should be matched with a proper ratio of FAX (I and Br) to realize large grains with defect‐healed grain boundaries. The optimized WB‐OIHPs show good photostability at both room‐temperature and elevated temperature. Moreover, the corresponding solar cells exhibit excellent photovoltaic performances with the champion Voc/stabilized power output efficiency reaching 1.244 V/18.60%, 1.284 V/16.51%, 1.296 V/15.01%, and 1.312 V/14.35% for WB‐OIHPs with x = 0.8, 1.2, 1.5, and 1.8, respectively.  相似文献   

8.
Solution‐processing hybrid metal halide perovskites are promising materials for developing flexible thin‐film devices. This work reports the substrate effects on the spin–orbit coupling (SOC) in perovskite films through thermal expansion under thermal annealing. X‐ray diffraction (XRD) measurements show that using a flexible polyethylene naphthalate (PEN) substrate introduces a smaller mechanical strain in perovskite MAPbI3?xClx films, as compared to conventional glass substrates. Interestingly, the linear/circular photoexcitation‐modulated photocurrent studies find that decreasing mechanical strain gives rise to a weaker orbit–orbit interaction toward decreasing the SOC in the MAPbI3?xClx films prepared on flexible PEN substrates relative to rigid glass substrates. Simultaneously, decreasing the mechanical strain causes a reduction in the internal magnetic parameter inside the MAPbI3?xClx films, providing further evidence to show that introducing mechanical strain can affect the SOC in hybrid perovskite films upon using flexible substrates toward developing flexible perovskite thin‐film devices. Furthermore, thermal admittance spectroscopy indicates that the trap states are increased in the perovskite films prepared on flexible PEN substrates as compared to glass substrates. Consequently, PEN and rigid glass substrates lead to shorter and longer photoluminescence lifetimes, respectively. Clearly, these findings provide an insightful understanding on substrate effects on optoelectronic properties in flexible perovskite thin‐film devices.  相似文献   

9.
Solution‐processable hybrid perovskite solar cells are a new member of next generation photovoltaics. In the present work, a low‐temperature two‐step dipping method is proposed for the fabrication of CH3NH3PbI3‐xClx perovskite films on the indium tin oxide glass/poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) substrate. The bandgaps of the CH3NH3PbI3‐xClx perovskite films are tuned in the range between 1.54 and 1.59 eV by adjusting the PbCl2 mole fraction (nCl/(nCl + nI)) in the initial mixed precursor solution from 0.10 to 0.40. The maximum chlorine mole fraction measured by a unique potentiometric titration method in the produced CH3NH3PbI3‐xClx films can be up to 0.220 ± 0.020 (x = 0.660 ± 0.060), which is much higher than that produced by a one‐step spin‐coating method (0.056 ± 0.015, x = 0.17 ± 0.04). The corresponding solar cell with the CH3NH3PbI2.34±0.06Cl0.66±0.06 perovskite film sandwiched between PEDOT:PSS and C60 layers exhibits a power conversion efficiency as high as 14.5%. Meanwhile, the open‐circuit potential (Voc) of the device reaches 1.11 V, which is the highest Voc reported in the perovskite solar cells fabricated on PEDOT:PSS so far.  相似文献   

10.
We studied the effect of the charge transport layers in p-i-n perovskite solar cells using vacuum deposited methylammonium lead iodide thin-film absorbers. While solution-processed perovskite films are frequently deposited directly on PEDOT:PSS leading to good solar cell performances, in some cases even to very good Voc values, we show that in devices employing vacuum deposited MAPbI3 perovskites, the removal of the polyTPD electron blocker substantially reduces the photovoltaic behavior. This is indicative of rather different charge transport properties in the vacuum deposited MAPbI3 perovskites compared to those prepared from solution. On the other hand, we investigated the use of ionic interlayers as a possible alternative to low work function electrodes, whose reactivity towards air and moisture compromises the device stability. Two different electron extraction materials were evaluated as interlayers between the fullerene electron transport layer and a silver electrode, in particular a perylenediimide derivative and a conjugated polyelectrolyte. By studying the photovoltaic response and the electroluminescence properties of planar diodes using the ionic films and comparing them with devices employing barium, we found that such ionic interlayers can successfully replace the use of reactive electrodes, since they facilitate the electron extraction while reducing the non-radiative recombination at the electron transport interface.  相似文献   

11.
The performance of perovskite solar cells (PSCs) is extremely dependent on morphology and crystallinity of perovskite film. One of the most effective methods to achieve high performance perovskite solar cells has been to introduce additives that serve as dopants, crystallization or passivation agents. Herein a facile strategy by introducing methylammonium chloride (MACl) and polar solvent N,N-Dimethylformamide (DMF) as co-additives in two-step sequential method is proposed to realize high quality perovskite film. It is demonstrated that DMF facilitates methylammonium iodide (MAI) penetrating easily into PbI2 layer to form highly crystalized perovskite film with uniform morphology which is essential to achieve high VOC. While MACl induces MAPbI3 to crystallize in a pure α-phase and suppress non-photovoltaic phase, which guarantees high FF. Pure α-phase perovskite film with uniform morphology can be achieved by adopting MACl and DMF together and the corresponding solar cell illustrates a power conversion efficiency (PCE) of 19.02% with substantially promoted durability. Moreover, A VOC as high as 1.181 V is succeeded for MAPbI3 based solar cell benefiting from the synergistic effect.  相似文献   

12.
MAPbI3 has been considered as a candidate for the active layer of perovskite solar cells in recent years. We proposed a device model to investigate the contribution of cuprous iodide (CuI) to MAPbI3 perovskite thin films to power conversion efficiency (PCE) and demonstrated that the dosage of CuI affects the grain size of thin films and the PCE. Through the results of the SEM analysis, we found that the grain boundaries of MAPbI3 perovskite films decreased with increases in the dosage of CuI and the grain size increased significantly from 164 nm ± 49 nm–299 nm ± 127 nm. In addition, the results of the PL measurement showed that the PL intensity decreased after addition of CuI to the MAPbI3 perovskite thin films, suggesting a reduction in the charge recombination. The XRD patterns indicated that the addition of CuI did not influence the main structure of the MAPbI3 perovskite. Interestingly, CuI plays a key role in the passivation of defects in MAPbI3 perovskite thin films, which can reduce non-radiative recombination and increase the fill factor and open-circuit voltage of the device. In this study, we adjusted the grain size and passivated the MAPbI3 thin film by controlling the dosage of CuI. We also increased the power conversion efficiency from 10% to 13%. This type of perovskite solar cell provided a simple, low cost preparation process for practical applications.  相似文献   

13.
In this study, deposition conditions for making a‐SiOx:H are investigated systematically in order to obtain a high band gap material. We found that at given optical band gap, a‐SiOx:H with favorable opto‐electronic properties can be obtained when deposited using low CO2 flow rates and deposition pressures. We also found that a low radio frequency power density is required in order to limit the effect of ion bombardment on the material properties of i‐a‐SiOx:H and thereby the solar cell performance. In addition, by decreasing the heater temperature from 300 to 200°C when making the i‐a‐SiOx:H, the Voc can be increased. We employed optimized p‐doped and n‐doped a‐SiOx:H films into the p‐i‐n solar cells, and as a consequence, a high Voc of over 1 V and high fill factor (FF) are obtained. When depositing on texture‐etched ZnO:Al substrates, a high efficiency a‐SiOx:H single junction solar cell having a high Voc × FF product of 0.761 (Voc: 1.042 V, Jsc: 10.3 mA/cm2, FF: 0.73, efficiency: 7.83%) was obtained. The a‐SiOx:H solar cell shows comparable light degradation characteristics to standard a‐Si:H solar cells. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
An important property of hybrid layered perovskite is the possibility to reduce its dimensionality to provide wider band gap and better stability. In this work, 2D perovskite of the structure (PEA)2(MA)n–1PbnBr3n+1 has been sensitized, where PEA is phenyl ethyl‐ammonium, MA is methyl‐ammonium, and using only bromide as the halide. The number of the perovskite layers has been varied (n) from n = 1 through n = ∞. Optical and physical characterization verify the layered structure and the increase in the band gap. The photovoltaic performance shows higher open circuit voltage (Voc) for the quasi 2D perovskite (i.e., n = 40, 50, 60) compared to the 3D perovskite. Voc of 1.3 V without hole transport material (HTM) and Voc of 1.46 V using HTM have been demonstrated, with corresponding efficiency of 6.3% and 8.5%, among the highest reported. The lower mobility and transport in the quasi 2D perovskites have been proved effective to gain high Voc with high efficiency, further supported by ab initio calculations and charge extraction measurements. Bromide is the only halide used in these quasi 2D perovskites, as mixing halides have recently revealed instability of the perovskite structure. These quasi 2D materials are promising candidates for use in optoelectronic applications that simultaneously require high voltage and high efficiency.  相似文献   

15.
With the capability to manipulate the built-in field in solar cells, ferroelectricity is found to be a promising attribute for harvesting solar energy in solar cell devices by influencing associated device parameters. Researchers have devoted themselves to the exploration of ferroelectric materials that simultaneously possess strong light absorption and good electric transport properties for a long time. Here, it is presented a novel and facile approach of combining state-of-art light absorption and electric transport properties with ferroelectricity by the incorporation of room temperature 1D ferroelectric perovskite with 3D organic–inorganic hybrid perovskite (OIHP). The 1D/3D mixed OIHP films are found to exhibit evident ferroelectric properties. It is notable that the poling of the 1D/3D mixed ferroelectric OIHP solar cell can increase the average Voc can be increased from 1.13 to 1.16 V, the average PCE from 20.7% to 21.5%. A maximum power conversion efficiency of 22.7%, along with an enhanced fill factor of over 80% and open-circuit voltage of 1.19 V, can be achieved in the champion device. The enhancement is by virtue of reduced surface recombination by ferroelectricity-induced modification of the built-in field. The maximum power point tracking measurement substantiates the retention of ferroelectric-polarization during the continued operation.  相似文献   

16.
Recent years have witnessed considerable progress in the development of solar cells based on lead halide perovskite materials. However, their intrinsic instability remains a limitation. In this context, the interplay between the thermal degradation and the hydrophobicity of perovskite materials is investigated. To this end, the salt 1‐(4‐ethenylbenzyl)‐3‐(3,3,4,4,5,5,6,6,7,7,8,8,8‐tridecafluorooctylimidazolium iodide (ETI), is employed as an additive in hybrid perovskites, endowing the photoactive materials with high thermal stability and hydrophobicity. The ETI additive inhibits methylammonium (MA) permeation in methylammonium lead triiodide (MAPbI3) occurring due to intrinsic thermal degradation, by inhibiting out‐diffusion of the MA+ cation, preserving the pristine material and preventing decomposition. With this simple approach, high efficiency solar cells based on the unstable MAPbI3 perovskite are markedly stabilized under maximum power point tracking, leading to greater than twice the preserved efficiency after 700 h of continuous light illumination and heating (60 °C). These results suggest a strategy to tackle the intrinsic thermal decomposition of MAI, an essential component in all state‐of‐the‐art perovskite compositions.  相似文献   

17.
All-inorganic perovskite solar cells (PSCs) have been the research focus due to their high thermal stability and proper band gap for tandem solar cells. However, their power conversion efficiency (PCE) is still lower than that of organic-inorganic hybrid PSCs. Herein, a sacrificing dye (Rhodamine B isothiocyanate, RBITC) is developed to regulate the growth of perovskite film by in situ release of ethylammonium cations, isothiocyanate anions and benzoic acid molecules upon annealing and illumination. The ethylammonium cations can efficiently passivate surface defects. The isothiocyanate anions incorporate with uncoordinated Pb to regulate the crystallization process. The benzoic acid molecules facilitate the nucleation of the perovskite crystals. Especially, the illumination can accelerate the release of these beneficial ions/molecules to improve the quality of perovskite films further. After optimization with RBITC, a high open circuit voltage (VOC) of 1.24 V and a champion PCE of 20.95% are obtained, which are among the highest Voc and PCE values of CsPbI3 PSCs. Accordingly, the operational stability of the PSC devices is significantly improved. The results provide an efficient chemical strategy to regulate the formation of perovskite films in whole crystallization process for high performance all-inorganic PSCs.  相似文献   

18.
A graphene oxide (GO) film is functionalized with metal (Au) and metal‐oxide (MoOx) nanoparticles (NPs) as a hole‐extraction layer for high‐performance inverted planar‐heterojunction perovskite solar cells (PSCs). These NPs can increase the work function of GO, which is confirmed with X‐ray photoelectron spectra, Kelvin probe force microscopy, and ultraviolet photoelectron spectra measurements. The down‐shifts of work functions lead to a decreased level of potential energy and hence increased Voc of the PSC devices. Although the GO‐AuNP film shows rapid hole extraction and increased Voc, a Jsc improvement is not observed because of localization of the extracted holes inside the AuNP that leads to rapid charge recombination, which is confirmed with transient photoelectric measurements. The power conversion efficiency (PCE) of the GO‐AuNP device attains 14.6%, which is comparable with that of the GO‐based device (14.4%). In contrast, the rapid hole extraction from perovskite to the GO‐MoOx layer does not cause trapping of holes and delocalization of holes in the GO film accelerates rapid charge transfer to the indium tin oxide substrate; charge recombination in the perovskite/GO‐MoOx interface is hence significantly retarded. The GO‐MoOx device consequently shows significantly enhanced Voc and Jsc, for which its device performance attains PCE of 16.7% with great reproducibility and enduring stability.  相似文献   

19.
Tandem solar cells (TSCs) comprising stacked narrow‐bandgap and wide‐bandgap subcells are regarded as the most promising approach to break the Shockley–Queisser limit of single‐junction solar cells. As the game‐changer in the photovoltaic community, organic–inorganic hybrid perovskites became the front‐runner candidate for mating with other efficient photovoltaic technologies in the tandem configuration for higher power conversion efficiency, by virtue of their tunable and complementary bandgaps, excellent photoelectric properties, and solution processability. In this review, a perspective that critically dilates the progress of perovskite material selection and device design for perovskite‐based TSCs, including perovskite/silicon, perovskite/copper indium gallium selenide, perovskite/perovskite, perovskite/CdTe, and perovskite/GaAs are presented. Besides, all‐inorganic perovskite CsPbI3 with high thermal stability is proposed as the top subcell in TSCs due to its suitable bandgap of ≈1.73 eV and rapidly increasing efficiency. To minimize the optical and electrical losses for high‐efficiency TSCs, the optimization of transparent electrodes, recombination layers, and the current‐matching principles are highlighted. Through big data analysis, wide‐bandgap perovskite solar cells with high open‐circuit voltage (Voc) are in dire need in further study. In the end, opportunities and challenges to realize the commercialization of TSCs, including long‐term stability, area upscaling, and mitigation of toxicity, are also envisioned.  相似文献   

20.
Carrier transport in methylammonium lead iodide (MAPbI3)‐based hybrid organic–inorganic perovskites (HOIPs) is obscured by vacancy‐mediated ion migration. Thus, the nature of migrating species (cation/anion) and their effect on electronic transport in MAPbI3 has remained controversial. Temperature‐dependent pulsed voltage–current measurements of MAPbI3 thin films are performed under dark conditions, designed to decouple ion‐migration/accumulation and electronic transport. Measurement conditions (electric‐field history and scan rate) are shown to affect the electronic transport in MAPbI3 thin films, through a mechanism involving ion migration and accumulation at the electrode interfaces. The presence of thermally activated processes with distinct activation energies (Ea) of 0.1 ± 0.001 and 0.41 ± 0.02 eV is established, and are assigned to electromigration of iodine vacancies and methylammonium vacancies, respectively. Analysis of activation energies obtained from electronic conduction versus capacitive discharge shows that the electromigration of these ionic species is responsible for the modification of interfacial electronic properties of MAPbI3, and elaborates previously unaddressed issues of “fast” and “slow” ion migration. The results demonstrate that the intrinsic behavior of MAPbI3 material is responsible for the hysteresis of the solar cells, but also have implications for other HOIP‐based devices, such as memristors, detectors, and energy storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号