首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The separation of aqueous alcohol mixtures was carried out by use of a series of novel aromatic polyamide membranes. The aromatic polyamides were prepared by the direct polycondensation of 2,2′‐dimethyl‐4,4′‐bis(aminophenoxyl)biphenyl (DBAPB) with various aromatic diacids, such as terephthalic acid (TPAc), 5‐tert‐butylisophthalic acid (TBPAc), and 4,4′‐hexafluoroisopropylidenedibenzoic acid (FDAc). The pervaporation and evapomeation performance of these novel aromatic polyamide membranes for dehydrating aqueous alcohol solution were investigated. The solubility of ethanol in the aromatic polyamide membranes is higher than that of water, but the diffusivity of water through the membrane is higher than that of ethanol. The effect of diffusion selectivity on the membrane separation performances plays an important role in the evapomeation process. Compared with pervaporation, evapomeation effectively increases the permselectivity of water. Moreover, the effect of aromatic diacids on the polymer chain packing density, pervaporation, and evapomeation performance were investigated. It was found that the permeation rate could be increased by introduction of a bulky group into the polymer backbone. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2688–2697, 2003  相似文献   

2.
Two kinds of aromatic–aliphatic polyamide oligomers were newly prepared by the reactant pairs of 3,4′-oxydianiline–adipic acid and 3,4′-oxydianiline–azelaic acid. These oligomers were then condensed separately with α, ω-polybutadienedicarboxylic acid giving two series of polybutadiene–polyamide multiblock copolymers. Properties of four series of polybutadiene–polyamide multiblock copolymers, whose polyamide blocks consisted of not only newly prepared polyamides but also previously synthesized aromatic polyamides derived from 4,4′-oxydianiline–isophthalic acid and 3,4′-oxydianiline–isophthalic acid, were investigated on the view point of structure-property relationship. A larger extent of the Tg depression of polybutadiene phase, and higher tensile strength and modulus were observed in the block copolymers having aromatic polyamides compared with those having aliphatic ones.  相似文献   

3.
A series of novel aromatic polyamides containing both fluorene or xanthene cardo moieties and fluorinated phenoxy pendant groups were synthesized from two fluorinated isophthaloyl chlorides and four diamines containing cardo groups by the low‐temperature solution polycondensation in N,N‐dimethylacetamide (DMAc). The obtained polymers were characterized by different physicochemical techniques. All the polymers were amorphous and readily soluble in many organic solvents such as DMAc, N‐methyl‐2‐pyrrolidinone, N,N‐dimethylformamide, dimethyl sulfoxide, pyridine, and tetrahydrofuran at room temperature. The new fluorinated polyamides had high thermal stability with the glass transition temperatures of 237–259°C, the temperatures at 5% weight loss of 437–476°C in nitrogen. All the polymers formed transparent, strong, and flexible films with tensile strengths of 70.6–87.5 MPa, tensile moduli of 2.23–2.78 GPa, and elongations at break of 5.8–8.7%. These polyamide films had high optical transparency with an ultraviolet–visible absorption cutoff wavelength of 352–368 nm, low dielectric constants of 3.24–3.45 (1 MHz), and lower water absorptions of 1.06–1.43%. POLYM. ENG. SCI., 57:1234–1241, 2017. © 2017 Society of Plastics Engineers  相似文献   

4.
Tetraphenylthiophene diamine (TPTDA) was prepared through a modified three‐step route to achieve an improved overall yield. TPTDA reacted with succinic, adipic, suberic, sebasic, and fumaric acids via the Yamazaki phosphorylation method to yield novel partially aromatic polyamides (TPT series). A counterpart polyamide series based on p‐phenylene diamine (Ph series) was also synthesized under the same conditions. All of the polymers were characterized by means of spectrochemical (Fourier transform infrared spectroscopy, 1H‐nuclear magnetic resonance (NMR), and 13C‐NMR) and thermal (differential scanning calorimetry and thermogravimetric) methods of analysis. Solubility of TPT polyamides was clearly improved due to the presence of the bulky aromatic diamine as well as flexible CH2—CH2 segments. The highly phenylated thiophene diamine moiety was recognized to improve thermal stability of the TPT polyamides in comparison with Ph polyamides (integral procedural decomposition temperature (IPDT) 480–517°C against 454–485°C). A favorable balance was recognized in regard to solubility, thermostability, and melting temperature in the TPT polyamides, especially TPT4 and TPT6. Therefore, they may be considered good candidates for processable polymers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1144–1153, 2000  相似文献   

5.
Optically active helical polyamides were synthesized by condensation of axially dissymmetric (R)‐ or (S)‐6,6′‐diamino‐2,2′‐dimethylbiphenyl with aromatic dicarbonyl chlorides. The wholly aromatic polyamides obtained were soluble in various low‐polarity organic solvents such as tetrahydrofuran and chloroform, as well as in polar N,N‐dimethylacetamide. Excellent thermal stability of the helical structure was observed for the polyamide obtained with 4,4′‐dicarbonylbiphenyl chloride in refluxing N,N‐dimethylacetamide. Chiroptical data obtained from the circular dichroism spectra showed that the helical conformation of the polyamide containing azobenzene segments in the main chain can be transformed reversibly on irradiation with UV–visible light because of the trans–cis isomerization of the segments. Copyright © 2004 Society of Chemical Industry  相似文献   

6.
A series of novel fluorine containing aromatic polyamides were synthesized by the direct polycondensation of various fluorine containing aromatic diamines and commercially available 5‐t‐butyl isophthalic acid. These polyamides have good solubility in several organic solvents such as dimethylformamide, N,N‐dimethylacetamide, 1‐Methyl‐2‐pyrrolidone, dimethyl sulfoxide, and tetrahydrofuran. The synthesized polymers exhibited inherent viscosities up to 0.93 dL/g and Mw up to 1,52,000 with PDI of 2.49. The polyamides exhibited good thermal stability up to 489°C for 10% weight loss in nitrogen and high glass transition temperature up to 273°C. Dynamic mechanical analysis showed a very good retention of storage modulus up to the glass transition temperature. The tan δ peak value at 1 Hz was used to calculate the Tg and these values are in good agreement with differential scanning calorimetry data. The polyamide films were flexible with tensile strength up to 72 MPa, elongations at break up to 14%, and modulus of elasticity up to 1.39 GPa depending on the exact repeating unit structure. X‐ray diffraction measurements indicate that these polyamides are semicrystalline. Rheology study showed same trend of melt viscosity behavior with different shear rate for all polymers. Water absorption study indicates the hydrophobic nature of the polymer. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
《分离科学与技术》2012,47(13):2189-2199
Abstract

The effects of chemical structure on the values of different electrical parameters measured with novel aromatic polyamide (aramid) membranes were studied. Poly-(isophthalamides) containing pendant groups were considered since they can be transformed into dense membranes, suitable for the determination of characteristic transport parameters such as ion transport numbers, electrical resistances and capacitances. Measurements were carried out with the membranes in contact with different NaCl and MgCl2 solutions. Results show that resistance values are strongly dependent on concentration, but membrane capacitance is almost constant for the whole range of concentrations studied (10?3 < C(N) < 5 × 102). The ionic permeabilities in the membrane were determined from membrane potential and resistance results. The presence of polar side substituents causes lower resistivity in modified polyamides compared with the unsubstituted parent, and the higher the polarity of the substitutent, the lower the resistivity. This trend is valid for both NaCl and MgCl2 solutions.  相似文献   

8.
A series of new hexafluoroisopropylidene, isopropylidene, carbonyl, and ether moieties substituted polyamides have been prepared from aromatic diamines and various moieties substituted aromatic dianhydrides. The synthesized polyamides were readily soluble in polar solvents such as N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide. These polyamides exhibited good thermal stability and high char yields. The chemical and physical properties of the newly prepared polyamide‐polyhedral oligomeric silsequioxanes (PA‐POSS) were compared in terms of their chemical structures and thermal properties. The morphological properties of the polymeric nanocomposites depend both on their chemical structure of dianhydride and the aggregation of POSS were investigated by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. Polyamides with bulky POSS and ?uoro groups can effectively decrease dielectric constants. The dielectric constants of PA‐POSS were found to be decreased from 3.75 to 3.29 by changing the substitution. These polyamides showed good thermal stability up to 353 °C for a 10 % weight loss. The fluorinated polyamides have relatively higher thermal stability than the polyamides without halogen because of high bond energy of C? F bond. The fiuorinated groups in the polymer backbone have played an important role in the improvement of dielectric performance of polymers. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

9.
A new monomer 1,1‐bis(4‐amino‐3‐mercaptophenyl)‐4‐tert‐butylcyclohexane dihydrochloride, bearing the bulky pendant 4‐tert‐butylcyclohexylidene group, was synthesized from 4‐tert‐butylcyclohexanone in three steps. Its chemical structure was characterized by 1H NMR, 13C NMR, MS, FTIR, and EA. Aromatic poly(bisbenzothiazole)s (PBTs V) were prepared from the new monomer and five aromatic dicarboxylic acids by direct polycondensation. The inherent viscosities were in the range of 0.63–2.17 dL/g. These polymers exhibited good solubility and thermal stability. Most of the prepared PBTs V were soluble in various polar solvents. Thermogravimetric analysis showed the decomposition temperatures at 10% weight loss that were in the range of 495–534°C in nitrogen. All the PBTs V, characterized by X‐ray diffraction, were amorphous. The UV absorption spectra of PBTs V showed a range of λmax from 334 to 394 nm. All the PBTs V prepared had evident fluorescence emission peaks, ranging from 423 to 475 nm with different intensity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2000–2008, 2006  相似文献   

10.
It remains a problem to prepare cost‐effective aramid with good solubility via a simple method since the commercialization of aromatic polyamides such as Kevlar and Nomex by DuPont in 1960s. Herein, we report the facile preparation and properties of an aromatic polyamide copolymerized by 2,6‐naphthalene dichloride (26N‐COCl), 4,4′‐oxydianiline, and m‐phenylenediamine. The synthetic route is very facile and cost‐effective. The modified aramids possess excellent comprehensive properties. The polymers are soluble in some organics. Their thermal stabilities are excellent, with 5% weight loss temperatures (Td,5%'s) in air higher than 460 °C and glass transition temperatures (Tg's) higher than 280 °C. These polymers are easily processed into films, fibers, and tubes. The products exhibit high strength. For example, the films have excellent mechanical strength, with a tensile strength up to 139 MPa, a tensile modulus up to 3.45 GPa, and an elongation of 11%. The films are also transparent and fluorescent. The overall properties are better than those of the commercial Nomex. The facilely prepared aramids with good solubility are very promising for commercial use. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46341.  相似文献   

11.
Interfacial polymerization is used to prepare biobased furan polyamides from the carbohydrate‐derived monomer, 2,5‐furan dicarboxylic acid, aromatic diamines, and varying chain length aliphatic diamines. The molecular weights of the furan polyamides variations range 10,000–70,000 g/mol. These biobased polyamides have improved solubility relative to petroleum‐derived polyamides affording enhanced processability options. The glass transition temperatures (Tg) of the biobased furan polyamides are higher than that of aliphatic analogs, but lower than phenyl‐aromatic analogs. The Tg for these furan polyamides are as high as 280 °C. Also, the furan polyamide glass transition temperatures increase with decreasing aliphatic diamine chain length similar to results exemplified in petroleum‐based nylons. Group contribution parameters are determined for furans to enable simple prediction of the glass transition temperature and decomposition temperature of furan polyamides. The molar glass transition function for the furan is calculated to be 27.6 ± 1.5 K kg/mol. Thermal analysis measurements of the biobased furan polyamides have maximum thermal degradation temperatures at 350 °C or higher, similar to that of aliphatic polyamides when scaled with the number average molecular weight. The molar decomposition temperature functions are determined to be 37 K kg/mol for furans bonded to aliphatic units and 42 K kg/mol for furans bonded to phenyl units. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45514.  相似文献   

12.
A new series of six imidazolium‐based ionenes containing aromatic amide linkages has been developed. These ionene‐polyamides are all constitutional isomers varying in the regiochemistry of the amide linkages (para, meta) and xylyl linkages (ortho, meta, para) along the polymer backbone. The physical properties as well as the gas separation behaviors of the corresponding membranes have been extensively studied. These ionene‐polyamide membranes show excellent thermal and mechanical stabilities, together with self‐healing and shape memory characteristics. Most importantly, [TC‐API(p)‐Xy][Tf2N] and [IC‐API(m)‐Xy][Tf2N] membranes (TC, terephthaloyl chloride; API, 1‐(3‐aminopropyl)imidazole; Xy, xylyl; Tf2N, bis(trifluoromethylsulfonyl) imide; IC, isophthaloyl chloride), where the amide and xylyl linkages are attached at para and meta positions, exhibit superior selectivity for CO2/CH4 and CO2/N2 gas pairs. We also demonstrate the transport properties and diverse applicability of our newly developed ionene‐polyamides, particularly [TC‐API(p)‐Xy][Tf2N], for various industrial applications. © 2019 Society of Chemical Industry  相似文献   

13.
A novel diamine monomer having pendant 4‐(quinolin‐8‐yloxy) aniline group was successfully synthesized via aromatic substitution reaction of 8‐quinolinol with p‐fluoronitrobenzene followed by Pd/C catalyzed hydrazine reduction, amidation reaction between 4‐(quinolin‐8‐yloxy) aniline and 3,5‐dinitrobenzoylcholoride followed by Pd/C catalyzed hydrazine reduction. The diamine monomer was fully characterized by using FTIR, 1H‐NMR, 13C‐NMR, and elemental analysis. The diamine monomer was polymerized with various aromatic and aliphatic dicarboxylic acids to obtain the corresponding polyamides. The polyamides had inherent viscosity in the range of 0.30–0.41 dL/g and exhibited excellent solubility in the polar aprotic solvents such as DMAc, NMP, N,N‐dimethylformamide, Pyridine, and DMSO. The glass transition temperatures (Tg) of the polymers are high (up to 313°C) and the decomposition temperatures (Ti) range between 200 and 370°C, depending on the diacids residue in the polymers backbone. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
A new diaroyl chloride monomer, 5-(4-benzoyl-2,3,5,6-tetrafluorophenoxy)isophthaloyl dichloride (BTFPIPC), was prepared in a three-step synthesis. Six novel aromatic polyamides containing 4-benzoyl-2,3,5,6-tetrafluorophenoxy pendant groups were synthesized by low temperature polycondensation of BTFPIPC with six aromatic diamines in N,N-dimethylacetamide (DMAc). All these new polymers are amorphous and readily soluble in various dipolar solvents such as DMAc, N-methyl-2-pyrrolidinone (NMP), N,N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) at room temperature. These polymers showed glass transition temperatures between 212 and 243 °C and 5% weight loss temperatures ranging from 439 °C to 456 °C. These polyamides could be cast into transparent, flexible and strong films from DMAc solution with tensile strengths of 73.5–85.4 MPa, tensile moduli of 2.06–2.72 GPa, and elongations at break of 6.4–9.3%. These new polyamide films exhibited low dielectric constants of 3.26–3.57 (1 MHz), lower water uptakes in the range of 1.27–2.28%, and excellent transparency with an ultraviolet-visible absorption cut-off wavelength in the 326–373 nm range. Primary characterization of these new polyamides shows that they might serve as new candidates for processable high-performance polymeric materials.  相似文献   

15.
A new monomer, 2,5‐bis(4‐carboxy methylene phenyl)‐3,4‐diphenyl thiophene (V) has been synthesized and characterized by physical and spectroscopic methods. A series of eight aromatic–aliphatic polyamides was prepared from the (V) and different aromatic diamines using Yamazaki's direct phosphorylation reaction. The polyamides were characterized by IR spectroscopy, viscosity measurements, and thermal analysis. An excellent yield of these polyamides was obtained, with inherent viscosities in the range of 0.28 to 0.67 dL/g, and the polyamide were readily soluble in aprotic polar solvents such as N‐methyl‐2‐pyrrolidone, N‐N‐dimethyl acetamide, dimethyl sulphoxide, and so forth. Polyamides could be cast into transparent and flexible films. They had glass‐transition temperatures of 225–273°C. When evaluated by thermogravimetry, thermal analysis of the polyamides showed no weight loss below 311°C, and the char yield in air at 900°C was 55%–67%. The structure–property correlation among these polyamides is also discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 566–571, 2001  相似文献   

16.
A series of sulfonated poly(arylene biphenylsulfone ether) polymers containing up to two pendant sulfonic acid groups per repeat unit were successfully synthesized from 4,4′‐bis[(4‐chlorophenyl)sulfonyl]‐1,1′‐biphenyl (BCPSBP), disodium 3,3′‐disulfonate‐4,4′‐dichlorodiphenylsulfone (SDCDPS) and bisphenol A via aromatic nucleophilic displacement polycondensation. The resulting polymers were characterized by means of Fourier transform infrared and 1H NMR spectroscopy, gel permeation chromatography, differential scanning calorimetry and thermogravimetric analysis (TGA). The number‐average molecular weight (Mn) of the synthesized polymers was in the range 15 300–22 900 g mol?1, and the polydispersity indices (Mw/Mn) varied from 2.5 to 4.4. Tough membranes with SDCDPS/BCPSBP mole ratio up to 50:50 were successfully cast using N‐methyl‐2‐pyrrolidone (NMP). An increase of sulfonic acid groups in the polymer backbone resulted in increased solubility in aprotic polar solvents and glass transition temperature. The TGA curves of all the copolymers in acid form exhibited two distinct weight‐loss profiles. The influential characteristics of the polymer electrolyte membranes, such as tensile strength, water uptake, ion‐exchange capacity and proton conductivity, were characterized with respect to the pendant sulfonic acid groups. Atomic force microscopy phase images of the acid‐form membranes clearly showed the hydrophilic domains, with sizes increasing as a function of the degree of sulfonation. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
A novel dendronized aromatic polyamide with a polyamide backbone and chloromethylene‐end‐functionalized polyamide dendrons is reported for the first time. An attempt at a one‐pot synthesis of end‐functionalized dendronized polymers with a macromonomer strategy without protection and deprotection procedures is also reported for the first time. The results from Fourier transform infrared and NMR spectral analysis indicated that perfect coverage of the chloromethyl groups in the periphery of the resulting polymers was obtained. Data from gel permeation chromatography analysis showed a typical weight‐average molecular weight (Mw) of 76,678 and a polydispersity of 2.44 for the first‐generation polymers and an Mw of 41,554 and a polydispersity of 2.74 for the second‐generation polymers. The solubility in solvents for the resulting polymers was improved remarkably because of the introduction of the dendritic fragments and the existence of the periphery functional groups. Both the glass‐transition temperature and onset decomposition temperature decreased versus those of the linear aromatic polyamides, but the 50% weight loss temperature was still up to 723°C. The X‐ray diffractograms indicated only an amorphous peak in the wide‐angle region of 24–25°. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
Three kinds of polyamides were synthesized from three diamines and 1,3,5‐benzenetricarbonyl trichloride (TMC). The diamines used were m‐phenylene diamine, N‐methyl‐m‐phenylenediamine, and N,N′‐dimethyl‐m‐phenylenediamine. The average free volume sizes of the polyamides were measured by positron annihilation lifetime spectroscopy (PALS), and the free volume fractions were evaluated by molecular dynamics (MD) simulations. The methyl substitution on amino groups of diamines brought about an increase in interstitial space of molecular chains of the polyamides. In addition, reverse osmosis (RO) membranes were prepared by interfacial polymerization from the three diamines and TMC. The increase in the degree of methyl‐substitution of diamines led to increased chlorine resistance and decreased salt rejections of the polyamide RO membranes. Thus, the methyl‐substitution of diamines significantly influenced membrane performance. The vacancy sizes and fractional volumes in polyamides evaluated by PALS measurement and MD simulation were well correlated with salt rejection of polyamide RO membranes. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Step heating melt polycondensation was adopted in the preparation of polyamides based on 1,16‐octadecane diacid and α,ω? (CH2)2n diamines (n = 1–6). The structure was confirmed by various spectroscopic techniques (IR, Raman, 1H‐NMR, and 13C‐NMR). High molecular masses were obtained only in the presence of an excess of diamine and when the diamine possessed low volatility. The molecular masses were between (0.94 and 2.1) × 104 Da for all polyamides under consideration. An excellent correlation between size exclusion chromatography and 1H‐NMR data was demonstrated in the measurement of the degree of polymerization. The melting temperatures of the polyamides decreased from polyamide 12 18 to polyamide 2 18 as the amide density along the molecular chain declined. No significant variation was observed in the glass‐transition and decomposition temperatures of the polyamides that were obtained. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1565–1571, 2005  相似文献   

20.
A series of new polyphosphazene polymers were synthesized using three different pendant groups with the goal of probing structure–function relationships between pendant group substitution and polymer swelling/water flux through thin dense films. Formation of polymers with relative degrees of hydrophilicity was probed by varying the stoichiometry of the pendant groups attached to the phosphazene backbone: p‐methoxyphenol, 2‐(2‐methoxyethoxy)ethanol, and o‐allylphenol. The polymers in this study were characterized using NMR, thermal methods, and dilute solution light‐scattering techniques. These techniques revealed that the polymers were amorphous high polymers (Mw = 105–107) with varying ratios of pendant groups as determined by integration of the 1H‐ and 31P‐NMR spectra. Thin dense film membranes were solution‐cast with azo‐bis(cyclohexane)carbonitrile included in the matrix and crosslinked using thermal initiation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 422–431, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号