首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Designing thermally activated delayed fluorescence (TADF) materials with an efficient reverse intersystem crossing (RISC) process is regarded as the key to actualize efficient organic light‐emitting diodes (OLEDs) with low efficiency roll‐off. Herein, a novel molecular design strategy is reported where a typical TADF material 10‐phenyl‐10H, 10′H‐spiro[acridine‐9, 9′‐anthracen]‐10′‐one (ACRSA) is utilized as a functional electron donor to design TADF materials of 2,4,6‐triphenyl‐1,3,5‐triazine(TRZ)‐p‐ACRSA and TRZ‐m‐ACRSA. It is unique that the intramolecular charge transfer of the ACRSA moiety and the intramolecular and through‐space intermolecular charge transfer between the TRZ and ACRSA moieties, provide a “multichannel” effect to enhance the rate of the reverse intersystem crossing process (krisc) exceeding 10?6 s?1. TADF OLEDs based on TRZ‐p‐ACRSA as an emitter show a maximum external quantum efficiency (EQE) of 28% with reduced efficiency roll‐off (EQEs of 27.5% and 22.1% at 100 and 1000 cd m?2, respectively). Yellow phosphorescent OLEDs utilizing TRZ‐p‐ACRSA as a host material show record‐high EQE of 25.5% and power efficiency of 115 lm W?1, while phosphorescent OLEDs based on TRZ‐m‐ACRSA show further lower efficiency roll‐off with EQEs of 25.2%, 24.3%, and 21.5% at 100, 1000, and 10 000 cd m?2, respectively.  相似文献   

2.
Luminescent materials with thermally activated delayed fluorescence (TADF) can harvest singlet and triplet excitons to afford high electroluminescence (EL) efficiencies for organic light‐emitting diodes (OLEDs). However, TADF emitters generally have to be dispersed into host matrices to suppress emission quenching and/or exciton annihilation, and most doped OLEDs of TADF emitters encounter a thorny problem of swift efficiency roll‐off as luminance increases. To address this issue, in this study, a new tailor‐made luminogen (dibenzothiophene‐benzoyl‐9,9‐dimethyl‐9,10‐dihydroacridine, DBT‐BZ‐DMAC) with an unsymmetrical structure is synthesized and investigated by crystallography, theoretical calculation, spectroscopies, etc. It shows aggregation‐induced emission, prominent TADF, and interesting mechanoluminescence property. Doped OLEDs of DBT‐BZ‐DMAC show high peak current and external quantum efficiencies of up to 51.7 cd A?1 and 17.9%, respectively, but the efficiency roll‐off is large at high luminance. High‐performance nondoped OLED is also achieved with neat film of DBT‐BZ‐DMAC, providing excellent maxima EL efficiencies of 43.3 cd A?1 and 14.2%, negligible current efficiency roll‐off of 0.46%, and external quantum efficiency roll‐off approaching null from peak values to those at 1000 cd m?2. To the best of the authors' knowledge, this is one of the most efficient nondoped TADF OLEDs with small efficiency roll‐off reported so far.  相似文献   

3.
Phosphorescent organic light‐emitting diodes (OLEDs) with ultimate efficiency in terms of the external quantum efficiency (EQE), driving voltage, and efficiency roll‐off are reported, making use of an exciplex‐forming co‐host. This exciplex‐forming co‐host system enables efficient singlet and triplet energy transfers from the host exciplex to the phosphorescent dopant because the singlet and triplet energies of the exciplex are almost identical. In addition, the system has low probability of direct trapping of charges at the dopant molecules and no charge‐injection barrier from the charge‐transport layers to the emitting layer. By combining all these factors, the OLEDs achieve a low turn‐on voltage of 2.4 V, a very high EQE of 29.1% and a very high power efficiency of 124 lm W?1. In addition, the OLEDs achieve an extremely low efficiency roll‐off. The EQE of the optimized OLED is maintained at more than 27.8%, up to 10 000 cd m?2.  相似文献   

4.
An exciplex forming co‐host is introduced in order to fabricate orange organic light‐emitting diodes (OLEDs) with high efficiency, low driving voltage and an extremely low efficiency roll‐off, by the co‐doping of green and red emitting phosphorescence dyes in the host. The orange OLEDs achieves a low turn‐on voltage of 2.4 V, which is equivalent to the triplet energy gap of the phosphorescent‐green emitting dopant, and a very high external quantum efficiency (EQE) of 25.0%. Moreover, the OLEDs show low efficiency roll‐off with an EQE of over 21% at 10 000 cdm?2. The device displays a very good orange color (CIE of (0.501, 0.478) at 1000 cdm?2) with very little color shift with increasing luminance. The transient electroluminescence of the OLEDs indicate that both energy transfer and direct charge trapping takes place in the devices.  相似文献   

5.
The efficiency roll‐off in blue phosphorescent organic light emitting diodes (OLEDs) using different carbazole compounds as the host is systematically studied. While there is no significant difference in device efficiency, OLEDs using ter‐carbazole as the host show a reduction in efficiency roll‐off at high luminance. Data from transient photoluminescence and electroluminescence measurements show that the lower triplet–triplet annihilation (TTA) and triplet–polaron quenching (TPQ) rates in devices with the ter‐carbazole host compared with other carbazole hosts are the reasons for this reduced efficiency roll‐off. It is also found that the host materials with low glass transition temperatures are more susceptible to the efficiency roll‐off problem.  相似文献   

6.
To develop high‐performance thermally activated delayed fluorescence (TADF) exciplex emitters, a novel strategy of introducing a single‐molecule TADF emitter as one of the constituting materials has been presented. Such a new type of exciplex TADF emitter will have two reverse intersystem crossing (RISC) routes on both the pristine TADF molecules and the exciplex emitters, benefiting the utilization of triplet excitons. Based on a newly designed and synthesized single‐molecule TADF emitter MAC, a highly efficient exciplex emitter MAC:PO‐T2T has been obtained. The device based on MAC:PO‐T2T with a weight ratio of 7:3 exhibits a low turn‐on voltage of 2.4 V, high maximum efficiency of 52.1 cd A?1 (current efficiency), 45.5 lm W?1 (power efficiency), and 17.8% (external quantum efficiency, EQE), as well as a high EQE of 12.3% at a luminance of 1000 cd m?2. The device shows the best performance among reported organic light‐emitting devices based on exciplex emitters. Such high‐efficiency and low‐efficiency roll‐off should be ascribed to the additional reverse intersystem crossing process on the MAC molecules, showing the advantages of the strategy described in this study.  相似文献   

7.
A series of twisted D–π–A type emitters based on the acridine donor unit and CN‐substituted pyridine, pyrimidine, and benzene acceptor units are studied. They not only allow one to systematically probe the influence of different acceptor strengths, but also permit one to intriguingly probe the influence of tunable conformations (twist angles) within the acceptor moieties through controlling the orientation of asymmetric heteroaromatic ring relative to the donor component. Intramolecular charge‐transfer transitions are observed in all these compounds and emission wavelengths are widely tunable from deep blue to yellow not only by the general acceptor strength due to the characters of heteroarene and CN‐substitution pattern but also by the subtle control of in‐acceptor conformation (twist angles). Small triplet‐to‐singlet energy gaps (ΔEST) and significant thermally activated delayed fluorescence (TADF) characteristics are obtained in a series of D–π–A compounds with sufficient acceptor strengths and tunable in‐acceptor conformation, yielding a series of efficient blue‐green to yellow TADF emitters with promisingly high photoluminescence quantum yields of 90%–100%. Highly efficient blue‐green to yellow TADF organic light‐emitting diodes (OLEDs) having external quantum efficiencies of up to 23.1%–31.3% are achieved using these efficient TADF emitters, which are among the most efficient TADF OLEDs ever reported.  相似文献   

8.
The study reports the development of a solution‐processed phosphorescent tandem organic light‐emitting device (OLED) exhibiting extremely small efficiency roll‐off. The OLED comprises two light‐emitting units (LEUs) connected by an interconnecting unit and employs a thermally activated delayed fluorescence host material. One of the most difficult tasks in the fabrication of OLEDs is to form a multilayer structure without dissolving the underlayer during the coating of the upper layer. The developed host materials exhibit high tolerance to methanol. The upper‐layer adjacent to the light‐emitting layer consists of ZnO nanoparticles, which could be dispersed in methanol by improving the preparation method. This results in the successful fabrication of a solution‐processed phosphorescent tandem OLED comprising two LEUs. The maximum external quantum efficiency (EQE) of the tandem device is 22.8%, and the EQE is 21.9% even at a high luminance of 10 000 cd m?2. The suppression of efficiency roll‐off is among the best of those previously reported. Moreover, the operational stability of the tandem device is much higher compared with single‐LEU devices.  相似文献   

9.
Recent studies have demonstrated that in thermally activated delayed fluorescence (TADF) materials, efficient reverse intersystem crossing occurs from nonradiative triplet exited states to radiative singlet excited states due to a small singlet–triplet energy gap. This reverse intersystem crossing significantly influences exciton annihilation processes and external quantum efficiency roll‐off in TADF based organic light‐emitting diodes (OLEDs). In this work, a comprehensive exciton quenching model is developed for a TADF system to determine singlet–singlet, singlet–triplet, and triplet–triplet annihilation rate constants. A well‐known TADF molecule, 3‐(9,9‐dimethylacridin‐10(9H)‐yl)‐9H‐xanthen‐9‐one (ACRXTN), is studied under intensity‐dependent optical and electrical pulse excitation. The model shows singlet–singlet annihilation dominates under optically excited decays, whereas singlet–triplet annihilation and triplet–triplet annihilation have strong contribution in electroluminescence decays under electrical pulse excitation. Furthermore, the efficiency roll‐off characteristics of ACRXTN OLEDs at steady state is investigated through simulation. Finally, singlet and triplet diffusion length are calculated from annihilation rate constants.  相似文献   

10.
The development of efficient red thermally activated delayed fluorescence (TADF) emitters with an emission wavelength beyond 600 nm remains a great challenge for organic light‐emitting diodes (OLEDs). Herein, two pairs of isomers are designed and synthesized by attaching electron‐donor 9,9‐diphenyl‐9,10‐dihydroacridine (DPAC) moiety to the different positions of two kinds of highly rigid planar acceptor cores (PDCN and PPDCN). Their TADF efficiencies and emission maxima (599–726 nm) are regulated by molecular isomer manipulation. Interestingly, the photoluminescence quantum yields (ΦPLs) of trans‐isomers T‐DA‐1 and T‐DA‐2 (78% and 89%) are remarkably higher than those of their corresponding cis‐isomers C‐DA‐1 and C‐DA‐2 (12% and 14%). Significantly increased ΦPL values can be explained by single crystal structures and theoretical simulation. As a result, a deep red TADF‐OLED based on T‐DA‐2 displays a maximum external quantum efficiency (EQE) of 26.26% at 640 nm. Notably, at a brightness of 100 cd m?2, the EQE value of T‐DA‐2‐based device still remains at an extremely high level of 23.95%, representing the highest value for reported red TADF‐OLEDs at the same brightness. These results provide a reasonable pathway to optimize optoelectronic properties and thereby construct efficient red TADF emitters through rational isomer engineering.  相似文献   

11.
Fluorescent emitters have regained intensive attention in organic light emitting diode (OLED) community owing to the breakthrough of the device efficiency and/or new emitting mechanism. This provides a good chance to develop new near‐infrared (NIR) fluorescent emitter and high‐efficiency device. In this work, a D‐π‐A‐π‐D type compound with naphthothiadiazole as acceptor, namely, 4,4′‐(naphtho[2,3‐c][1,2,5]thiadiazole‐4,9‐diyl)bis(N,N ‐diphenylaniline) (NZ2TPA), is designed and synthesized. The photophysical study and density functional theory analysis reveal that the emission of the compound has obvious hybridized local and charge‐transfer (HLCT) state feature. In addition, the compound shows aggregation‐induced emission (AIE) characteristic. Attributed to its HLCT mechanism and AIE characteristic, NZ2TPA acquires an unprecedentedly high photoluminescent quantum yield of 60% in the neat film, which is the highest among the reported organic small‐molecule NIR emitters and even exceeds most phosphorescent NIR materials. The nondoped devices based on NZ2TPA exhibit excellent performance, achieving a maximum external quantum efficiency (EQE) of 3.9% with the emission peak at 696 nm and a high luminance of 6330 cd m?2, which are among the highest in the reported nondoped NIR fluorescent OLEDs. Moreover, the device remains a high EQE of 2.8% at high brightness of 1000 cd m?2, with very low efficiency roll‐off.  相似文献   

12.
A novel thermally activated delayed fluorescence (TADF) molecule, PHCz2BP, is synthesized and used to construct high performance organic light‐emitting diodes (OLEDs) in this work. PHCz2BP is not only the neat emitting layer for efficient sky‐blue OLED, with very high peak external quantum efficiency/power efficiency (EQE/PE) values of 4.0%/6.9 lm W?1, but also acts as a host to sensitize high‐luminance and high‐efficiency green, orange, and red electrophosphorescence with the universal high EQEs of >20%. More importantly, two hybrid white OLEDs based on the double‐layer emitting system of PHCz2BP:green phosphor/PHCz2BP:red phosphor are achieved. To the best of the knowledge, this is the first report for three‐color (blue–green–red) white devices that adopt a TADF blue host emitter and two phosphorescent dopants without any other additional host. Such simple emitting systems thus realized the best electroluminescent performance to date for the WOLEDs utilizing the hybrid TADF/phosphor strategy: forward‐viewing EQEs of 25.1/23.6% and PEs of 24.1/22.5 lm W?1 at the luminance of 1000 cd m?2 with the color rendering indexes of 85/87 and warm‐white Commission Internationale de L'Eclairage coordinates of (0.41, 0.46)/(0.42, 0.45), indicating its potential to be used as practical eye‐friendly solid‐state lighting in future.  相似文献   

13.
Organic light‐emitting diodes (OLEDs) can promise flexible, light weight, energy conservation, and many other advantages for next‐generation display and lighting applications. However, achieving efficient blue electroluminescence still remains a challenge. Though both phosphorescent and thermally activated delayed fluorescence materials can realize high‐efficiency via effective triplet utilization, they need to be doped into appropriate host materials and often suffer from certain degree of efficiency roll‐off. Therefore, developing efficient blue‐emitting materials suitable for nondoped device with little efficiency roll‐off is of great significance in terms of practical applications. Herein, a phenanthroimidazole?anthracene blue‐emitting material is reported that can attain high efficiency at high luminescence in nondoped OLEDs. The maximum external quantum efficiency (EQE) of nondoped device is 9.44% which is acquired at the luminescence of 1000 cd m?2. The EQE is still as high as 8.09% even the luminescence reaches 10 000 cd m?2. The maximum luminescence is ≈57 000 cd m?2. The electroluminescence (EL) spectrum shows an emission peak of 470 nm and the Commission International de L'Eclairage (CIE) coordinates is (0.14, 0.19) at the voltage of 7 V. To the best of the knowledge, this is among the best results of nondoped blue EL devices.  相似文献   

14.
By introducing a neat Pt(II)‐based phosphor with a remarkably short decay lifetime, a simplified doping‐free phosphorescent organic light‐emitting diode (OLED) with a forward viewing external quantum efficiency (EQE) and power efficiency of 20.3 ± 0.5% and 63.0 ± 0.4 lm W?1, respectively, is demonstrated. A quantitative analysis of how triplet‐triplet annihilation (TTA) and triplet‐polaron annihilation (TPA) affect the device EQE roll‐off at high current densities is performed. The contributions from loss of charge balance associated with charge leakage and field‐induced exciton dissociation are found negligible. The rate constants kTTA and kTPA are determined by time‐resolved photoluminescence experiments of a thin film and an electrically‐driven unipolar device, respectively. Using the parameters extracted experimentally, the EQE is modeled versus electric current characteristics of the OLEDs by taking both TTA and TPA into account. Based on this model, the impacts of the emitter lifetime, quenching rate constants, and exciton formation zone upon device efficiency are analyzed. It is found that the short lifetime of the neat emitter is key for the reduction of triplet quenching.  相似文献   

15.
Actualizing highly efficient solution‐processed thermally activated delayed fluorescent (TADF) organic light‐emitting diodes (OLEDs) at high brightness becomes significant to the popularization of purely organic electroluminescence. Herein, a highly soluble emitter benzene‐1,3,5‐triyltris((4‐(9,9‐dimethylacridin‐10(9H)‐yl)phenyl)methanone was developed, yielding high delayed fluorescence rate (kTADF > 105 s?1) ascribed to the multitransition channels and tiny singlet–triplet splitting energy (ΔEST ≈ 32.7 meV). The triplet locally excited state is 0.38 eV above the lowest triplet charge‐transfer state, assuring a solely thermal equilibrium route for reverse intersystem crossing. Condensed state solvation effect unveils a hidden “trade‐off”: the reverse upconversion and triplet concentration quenching processes can be promoted but with a reduced radiative rate from the increased dopant concentration and the more polarized surroundings. Striking a delicate balance, corresponding vacuum‐evaporated and solution‐processed TADF‐OLEDs realized maximum external quantum efficiencies (EQEs) of ≈26% and ≈22% with extremely suppressed efficiency roll‐off. Notably, the wet‐processed one achieves to date the highest EQEs of 20.7%, 18.5%, 17.1%, and 13.6%, among its counterparts at the luminance of 1000, 3000, 5000, and 10 000 cd m?2, respectively.  相似文献   

16.
Two thioxanthone‐derived isomeric series of thermally activated delayed fluorescence (TADF) emitters 1,6‐2TPA‐TX/3,6‐2TPA‐TX and 1,6‐2TPA‐TXO/3,6‐2TPA‐TXO are developed for organic light‐emitting diodes (OLEDs). Blue emission devices based on symmetrical 3,6‐2TPA‐TX with common vertical transition route realize an extremely high external quantum efficiency (EQE) of 23.7%, and an ever highest EQE of 24.3% is achieved for yellow emission devices based on 3,6‐2TPA‐TXO by solely changing the sulfur atom valence state of the thioxanthone core. In contrast, their corresponding asymmetric isomers are affected by intramolecular energy transfer and more severely by a nonradiative deactivation pathway, to give much low EQE values (<5%). By utilizing 3,6‐2TPA‐TX as a blue emitter and 3,6‐2TPA‐TXO as a yellow emitter, an ever highest EQE of 20.4% is achieved for all‐fluorescence white OLEDs.  相似文献   

17.
Efficiency roll‐off in blue organic light‐emitting diodes especially at high brightness still remains a vital issue for which the excitons density‐dependent mechanism of host materials takes most responsibility. Additionally, the efficiency roll‐off leads to high power consumption and reduces the operating lifetime because higher driving voltage and current are required. Here, by subtly modifying the triphenylamine to oxygen‐bridged quasi‐planar structure, a novel thermally activated delayed fluorescence type blue host Tri‐o‐2PO is successfully developed. Efficiency roll‐off based on Tri‐o‐2PO is ultralow with external quantum efficiency (EQE) just dropping by around 2% in the high luminance range from 1000 cd m?2 to 10 000 cd m?2. As expected, low turn‐on voltage (≈2.9 V) of device is also achieved, which is close to the theory limit value (≈2.62 V). Super‐high power efficiency (≈60 lm W?1) and EQE (>22%) are also achieved when utilizing Tri‐o‐2PO as host. Furthermore, two‐color warm‐white light with CIE of (0.45, 0.43) and correlated color temperature of 2921 K is also fabricated and a champion EQE of 21% is delivered. These excellent performances prove the strategy of bridging the triphenylamine to reduce ΔEst is validated and suggest the great potential of this novel skeleton.  相似文献   

18.
The external quantum efficiencies (EQEs) of perovskite quantum dot light‐emitting diodes (QD‐LEDs) are close to the out‐coupling efficiency limitation. However, these high‐performance QD‐LEDs still suffer from a serious issue of efficiency roll‐off at high current density. More injected carriers produce photons less efficiently, strongly suggesting the variation of ratio between radiative and non‐radiative recombination. An approach is proposed to balance the carrier distribution and achieve high EQE at high current density. The average interdot distance between QDs is reduced and this facilitates carrier transport in QD films and thus electrons and holes have a balanced distribution in QD layers. Such encouraging results augment the proportion of radiative recombination, make devices with peak EQE of 12.7%, and present a great device performance at high current density with an EQE roll‐off of 11% at 500 mA cm?2 (the lowest roll‐off known so far) where the EQE is still over 11%.  相似文献   

19.
Purely organic light‐emitting materials, which can harvest both singlet and triplet excited states to offer high electron‐to‐photon conversion efficiencies, are essential for the realization of high‐performance organic light‐emitting diodes (OLEDs) without using precious metal elements. Donor–acceptor architectures with an intramolecular charge‐transfer excited state have been proved to be a promising system for achieving these requirements through a mechanism of thermally activated delayed fluorescence (TADF). Here, luminescent wedge‐shaped molecules, which comprise a central phthalonitrile or 2,3‐dicyanopyrazine acceptor core coupled with various donor units, are reported as TADF emitters. This set of materials allows systematic fine‐tuning of the band gap and exhibits TADF emissions that cover the entire visible range from blue to red. Full‐color TADF‐OLEDs with high maximum external electroluminescence quantum efficiencies of up to 18.9% have been demonstrated by using these phthalonitrile and 2,3‐dicyanopyrazine‐based TADF emitters.  相似文献   

20.
Thermally activated delayed fluorescence (TADF)‐type compounds have great potential as emitter molecules in organic light‐emitting diodes, allowing for electrofluorescence with 100% internal quantum efficiency. In small molecules, TADF is achieved through the formation of intramolecular charge‐transfer states. The only design limitation is the requirement that donor and acceptor entities spatially decouple the highest occupied and lowest unoccupied molecular orbitals, respectively, to minimize exchange splitting. The development of polymeric TADF emitters, on the contrary, has seen comparably small progress and those are typically built up from monomeric units that show promising TADF properties in small molecule studies beforehand. By contrast, herein, a way to achieve TADF properties in cyclic oligomers and polymers composed of non‐TADF building blocks is shown. Due to a strongly decreased energy splitting of the polymer with respect to the individual repeating unit between the lowest singlet and triplet excited state (ΔEST) and a sufficiently high radiative decay rate kSr, a highly efficient TADF polymer with up to 71% photoluminescence quantum yield is obtained. For the first time, an encouraging method is provided for producing highly efficient TADF oligomers and polymers from solely non‐TADF units via induced conjugation, opening a new design strategy exclusive for polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号