共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
为提高光伏阵列故障诊断的精度,提出一种基于核主成分分析(KPCA)和改进麻雀搜索算法(ISSA)优化核极限学习机(KELM)的光伏故障诊断方法。利用KPCA降维提取故障数据的非线性特征,减少外界条件产生的冗余数据,有效提高复杂故障识别准确率。通过融入Levy飞行和自适应权重t对麻雀搜索算法进行改进,并利用ISSA对KELM中的核参数γ和正则化系数C进行优化,建立了基于KPCA-ISSA-KELM的光伏阵列故障诊断模型。实验结果表明,经ISSA优化KELM的光伏阵列故障诊断模型与其他光伏阵列诊断模型相比,在故障诊断精度上达到97%,验证了该模型的准确性和有效性。 相似文献
3.
5.
对光伏阵列在不同故障态下的输出特性进行仿真,总结了光伏阵列在故障下输出特性的变化规律。分析了基于支路电流检测与电池板电压检测相结合的故障诊断策略,对比了3种电压传感器放置方法,优化设计了传感器放置策略。将光伏阵列等效为矩阵,建立了权值节点矩阵,提出了基于权值边覆盖的最优电压传感器放置方法,并在此基础上以3x3光伏阵列为例,分析了各种故障下电压传感器的特征值。在故障诊断的基础上,提出了阴影影响下光伏阵列多极值点最大功率点跟踪控制策略。通过搭建光伏阵列对所提的最优传感器配置方法和最大功率点跟踪方法进行了验证,实验结果验证了所提方法的正确性。 相似文献
6.
针对光伏阵列输出具有非线性并受最大功率点跟踪影响,从而导致传统的诊断方法精度低、模型性能差等问题,提出一种基于极端梯度提升的光伏阵列故障诊断方法。首先,在光伏电池单二极管模型的基础上,建立光伏阵列仿真模型,利用PVsyst软件对光伏阵列的输出特性和故障成因进行系统的模拟分析,得到了故障特征参数,并通过特征重要度排序验证了所选择故障特征参数的有效性;其次,提取光伏阵列不同故障状态下的故障特征,构建基于XGBoost的故障诊断模型;最后,利用网格搜索和交叉验证对诊断模型的超参数进行寻优,通过混淆矩阵计算评价指标来评估诊断模型的性能。并将该方法与决策树、随机森林以及梯度提升树相比,结果表明,该方法不仅能准确检测所有的故障种类,并且模型的泛化能力更好,诊断准确率更高。 相似文献
7.
光伏阵列长期暴露在恶劣的环境中,导致光伏组件易发生故障,从而影响光伏阵列的发电效率。在实际运行过程中,光伏阵列除发生单一故障之外,还会出现多类型的复合故障,给故障诊断加大了难度。提出了一种基于哈里斯鹰(HHO)算法优化极限学习机(ELM)的光伏阵列多类型复合故障诊断方法。用HHO算法优化ELM的权值和阈值,建立HHO-ELM故障诊断模型,并与ELM、粒子群优化算法(PSO)-ELM、正余弦优化算法(SCA)-ELM以及鲸鱼优化算法(WOA)-ELM算法进行对比。实验结果表明,对于复合故障类型,HHO-ELM模型具有更高的诊断准确率,提高了光伏阵列复合故障的识别精度。 相似文献
8.
光伏阵列多安装在较恶劣的室外环境中,因此在运行过程中常会发生故障。为辨别光伏阵列故障类型,提出了基于L-M算法的BP神经网络的故障诊断方法。在深入分析不同故障状态下光伏阵列输出量变化规律的基础上,确定了故障诊断模型的输入变量。本方法无需额外的设备支持,具有简便、成本低的优点;可以在线实时地进行故障诊断。仿真和初步实验结果验证了基于BP神经网络的故障诊断方法可以有效地检测出光伏阵列短路、断路、异常老化及局部阴影等四种故障。 相似文献
9.
光伏阵列所处环境恶劣严峻,导致故障频发。为提高光伏阵列故障诊断精度,针对光伏阵列的常见故障类型,提出基于深度信念网络(deep belief networks,DBN)的故障诊断方法。利用Matlab仿真模拟获取实验特征参数,建立以光伏阵列5种运行状态为输出的故障诊断模型;根据深度信念网络的特点,通过识别实验,分析不同训练集、训练周期以及受限玻尔兹曼机(restricted boltzmann machine,RBM)层数等对模型性能的影响,并从整体诊断精度和各类型故障诊断精度2方面,与模糊C均值聚类(fuzzy C-means clustering,FCM)、支持向量机(support vector machine,SVM)和BP神经网络(back propagation neural networks,BPNN)方法进行对比。实验结果表明,该方法适用于光伏阵列故障分类,相比于其他诊断模型,有效提高了故障识别准确率。 相似文献
10.
11.
12.
13.
14.
针对传统BP神经网络在光伏阵列故障诊断时受初始权值阈值的影响,易导致全局搜索过程陷入局部最优这一问题,提出了一种基于改进麻雀搜索算法优化RBF神经网络(ISSA-RBF)的光伏故障诊断方法。首先,利用Matlab建立光伏阵列故障仿真模型,提取出故障诊断模型的特征参数;其次,融入Levy飞行和自适应权重φ对麻雀搜索算法进行改进,用优化后的算法建立ISSA-RBF故障诊断模型;最后,与传统BP和SSA-RBF模型进行对比验证,实验结果表明,ISSA-RBF模型在故障诊断精度上达到94.8%,可以有效诊断光伏阵列的故障类型。 相似文献
15.
针对光伏阵列出现的组件阴影遮挡、短路与断路等故障,提出一种基于快速过采样主成分分析(over-sampling principal component analysis,OS-PCA)算法的光伏阵列故障诊断方法,实现故障检测与故障识别。通过检测各组串电流信号,利用快速OS-PCA算法计算各组串异常度,从而检测出故障串;通过误差补偿对光伏阵列工程模型进行优化,并通过分析故障时阵列工作点状态来识别故障类型。实验表明,该故障诊断方法可有效诊断出多变环境下组件阴影遮挡、短路、断路等故障,此外该方法在计算量以及内存占用上具有较强优势,适用于大型光伏电站的实时监控。 相似文献
16.
光伏面板由于部分遮阴或者光照不均匀所带来的热斑故障,可能导致整个光伏面板的输出功率降低,严重时可能造成光伏面板的烧毁。首先针对单个光伏电池推导出其数学模型,继而推广到采用SP结构的光伏阵列;接着对热斑故障的机理进行了分析,并分析了旁路二极管对于光伏面板的保护作用;通过将传统的电压、电流定位法、时间跟踪描述和光伏电池参数估计模型相结合,给出一种故障诊断方法,从而判断热斑故障发生的位置和严重程度;最后,通过对光伏阵列进行仿真建模,分析热斑故障对光伏阵列输出特性的影响,验证了所提故障诊断方法的可行性。 相似文献
17.
《电气技术》2020,(8)
为了提高光伏系统的可靠性和效率,本文设计了一种新的光伏阵列在线智能故障诊断系统。首先,使用霍尔电压电流传感器采集光伏阵列最大功率点作为原始数据,经过LoRa传输至诊断中心,再在采集到的原始数据中提取新的七维故障特征向量,包括工作电压、电流、辐照度和温度。其次,提出了一种基于自适应网络的优化模糊推理系统作为故障诊断模型。最后,通过基于Simulink的仿真和实验室光伏系统的实际故障实验,测试了所提出的基于自适应神经网络模糊推理系统的故障诊断模型的可行性和优越性。实验结果证明,所提出的基于自适应神经网络模糊推理系统的方法具有较好的性能,并且优于基于常规反向传播神经网络的方法。在仿真和实验数据集上,基于自适应神经网络模糊推理系统的故障诊断模型的总体准确性分别为99.9%和97.0%以上。 相似文献
18.
针对现有光伏阵列故障检测和诊断智能方法存在的泛化性不强、可解释性差的问题,提出了一种可解释性智能集成方法。对采集的光伏阵列输出时序电压、电流波形进行特征挖掘,并将多个已成熟应用于光伏故障诊断的智能算法作为不同基学习器与元学习器,构建结合不同智能算法优势且更具泛化性的Stacking集成学习模型;以沙普利可加性特征解释方法为总框架,并结合局部近似可解释性方法,对模型训练过程与结果进行解释分析,通过获取各特征的贡献、分析该集成模型的决策机制,并了解其如何进行诊断,提高其可靠度和可信度。算例实验结果表明,所提可解释性智能集成方法在不同规模数据集的测试中均实现了高精度的故障诊断,模型的可解释性结果表明由该智能集成模型建立的故障特征和诊断结果的映射遵循物理见解,增强了智能方法的可信度和透明性。 相似文献
19.
针对低电压穿越下并网光伏直流系统不稳定的问题,提出一种改进的双侧电压控制策略。前级变流电路引入电压反馈控制,形成电压反馈与最大功率跟踪(maximum power point tracking,MPPT)的混合控制,结合并网逆变器的电压反馈环路,在电压穿越时,对并网光伏直流系统进行综合控制,同时,为了实现前级电路电压控制和功率控制的自动均衡,基于母线电压实时值设计电压反馈环路和MPPT环路的自适应权重系数。为了证明改进策略在低电压穿越时对直流系统的稳定作用,基于RT-LAB平台搭建并网光伏系统的半实物测试环境,测试结果表明:相比于传统控制策略,在不采用Chopper电阻的情况下,双侧电压反馈控制策略能够在低电压穿越时将直流电压变化量从136 V降低到60.5 V,同时还能将并网冲击功率从3 955 W降低到2 264 W,不仅降低了变流电路的电流应力,还提升了光伏系统在低电压穿越时的稳定工作能力。 相似文献
20.
针对低电压穿越下并网光伏直流系统不稳定的问题,提出一种改进的双侧电压控制策略。前级变流电路引入电压反馈控制,形成电压反馈与最大功率跟踪(maximum power point tracking,MPPT)的混合控制,结合并网逆变器的电压反馈环路,在电压穿越时,对并网光伏直流系统进行综合控制,同时,为了实现前级电路电压控制和功率控制的自动均衡,基于母线电压实时值设计电压反馈环路和MPPT环路的自适应权重系数。为了证明改进策略在低电压穿越时对直流系统的稳定作用,基于RT-LAB平台搭建并网光伏系统的半实物测试环境,测试结果表明:相比于传统控制策略,在不采用Chopper电阻的情况下,双侧电压反馈控制策略能够在低电压穿越时将直流电压变化量从136 V降低到60.5 V,同时还能将并网冲击功率从3 955 W降低到2 264 W,不仅降低了变流电路的电流应力,还提升了光伏系统在低电压穿越时的稳定工作能力。 相似文献