首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Lithium metal–sulfur (Li–S) batteries are attracting broad interest because of their high capacity. However, the batteries experience the polysulfide shuttle effect in cathode and dendrite growth in the Li metal anode. Herein, a bifunctional and tunable mesoporous carbon sphere (MCS) that simultaneously boosts the performance of the sulfur cathode and the Li anode is designed. The MCS homogenizes the flux of Li ions and inhibits the growth of Li dendrites due to its honeycomb structure with high surface area and abundance of nitrogen sites. The Li@MCS cell exhibits a small overpotential of 29 mV and long cycling performance of 350 h under the current density of 1 mA cm‐2. Upon covering one layer of amorphous carbon on the MCS (CMCS), an individual carbon cage is able to encapsulate sulfur inside and reduce the polysulfide shuttle, which improves the cycling stability of the Li–S battery. As a result, the S@CMCS has a maximum capacity of 411 mAh g‐1 for 200 cycles at a current density of 3350 mA g‐1. Based on the excellent performance, the full Li–S cell assembled with Li@MCS anode and S@CMCS cathode shows much higher capacity than a cell assembled with Li@Cu anode and S@CMCS cathode.  相似文献   

2.
With the rising development of flexible and wearable electronics, corresponding flexible energy storage devices with high energy density are required to provide a sustainable energy supply. Theoretically, rechargeable flexible Li–O2 batteries can provide high specific energy density; however, there are only a few reports on the construction of flexible Li–O2 batteries. Conventional flexible Li–O2 batteries possess a loose battery structure, which prevents flexibility and stability. The low mechanical strength of the gas diffusion layer and anode also lead to a flexible Li–O2 battery with poor mechanical properties. All these attributes limit their practical applications. Herein, the authors develop an integrated flexible Li–O2 battery based on a high‐fatigue‐resistance anode and a novel flexible stretchable gas diffusion layer. Owing to the synergistic effect of the stable electrocatalytic activity and hierarchical 3D interconnected network structure of the free‐standing cathode, the obtained flexible Li–O2 batteries exhibit superior electrochemical performance, including a high specific capacity, an excellent rate capability, and exceptional cycle stability. Furthermore, benefitting from the above advantages, the as‐fabricated flexible batteries can realize excellent mechanical and electrochemical stability. Even after a thousand cycles of the bending process, the flexible Li–O2 battery can still possess a stable open‐circuit voltage, a high specific capacity, and a durable cycle performance.  相似文献   

3.
Sodium (Na) metal is one of the most promising electrode materials for next‐generation low‐cost rechargeable batteries. However, the challenges caused by dendrite growth on Na metal anodes restrict practical applications of rechargeable Na metal batteries. Herein, a nitrogen and sulfur co‐doped carbon nanotube (NSCNT) paper is used as the interlayer to control Na nucleation behavior and suppress the Na dendrite growth. The N‐ and S‐containing functional groups on the carbon nanotubes induce the NSCNTs to be highly “sodiophilic,” which can guide the initial Na nucleation and direct Na to distribute uniformly on the NSCNT paper. As a result, the Na‐metal‐based anode (Na/NSCNT anode) exhibits a dendrite‐free morphology during repeated Na plating and striping and excellent cycling stability. As a proof of concept, it is also demonstrated that the electrochemical performance of sodium–oxygen (Na–O2) batteries using the Na/NSCNT anodes show significantly improved cycling performances compared with Na–O2 batteries with bare Na metal anodes. This work opens a new avenue for the development of next‐generation high‐energy‐density sodium‐metal batteries.  相似文献   

4.
The Li–O2 battery (LOB) is considered as a promising next‐generation energy storage device because of its high theoretic specific energy. To make a practical rechargeable LOB, it is necessary to ensure the stability of the Li anode in an oxygen atmosphere, which is extremely challenging. In this work, an effective Li‐anode protection strategy is reported by using boric acid (BA) as a solid electrolyte interface (SEI) forming additive. With the assistance of BA, a continuous and compact SEI film is formed on the Li‐metal surface in an oxygen atmosphere, which can significantly reduce unwanted side reactions and suppress the growth of Li dendrites. Such an SEI film mainly consists of nanocrystalline lithium borates connected with amorphous borates, carbonates, fluorides, and some organic compounds. It is ionically conductive and mechanically stronger than conventional SEI layer in common Li‐metal‐based batteries. With these benefits, the cycle life of LOB is elongated more than sixfold.  相似文献   

5.
Lithium metal is considered as the most promising anode material due to its high theoretical specific capacity and the low electrochemical reduction potential. However, severe dendrite problems have to be addressed for fabricating stable and rechargeable batteries (e.g., lithium–iodine batteries). To fabricate a high‐performance lithium–iodine (Li–I2) battery, a 3D stable lithium metal anode is prepared by loading of molten lithium on carbon cloth doped with nitrogen and phosphorous. Experimental observations and theoretical calculation reveal that the N,P codoping greatly improves the lithiophilicity of the carbon cloth, which not only enables the uniform loading of molten lithium but also facilitates reversible lithium stripping and plating. Dendrites formation can thus be significantly suppressed at a 3D lithium electrode, leading to stable voltage profiles over 600 h at a current density of 3 mA cm?2. A fuel cell with such an electrode and a lithium–iodine cathode shows impressive long‐term stability with a capacity retention of around 100% over 4000 cycles and enhanced high‐rate capability. These results demonstrate the promising applications of 3D stable lithium metal anodes in next‐generation rechargeable batteries.  相似文献   

6.
Rechargeable aprotic lithium (Li)–O2 batteries with high theoretical energy densities are regarded as promising next‐generation energy storage devices and have attracted considerable interest recently. However, these batteries still suffer from many critical issues, such as low capacity, poor cycle life, and low round‐trip efficiency, rendering the practical application of these batteries rather sluggish. Cathode catalysts with high oxygen reduction reaction (ORR) and evolution reaction activities are of particular importance for addressing these issues and consequently promoting the application of Li–O2 batteries. Thus, the rational design and preparation of the catalysts with high ORR activity, good electronic conductivity, and decent chemical/electrochemical stability are still challenging. In this Review, the strategies are outlined including the rational selection of catalytic species, the introduction of a 3D porous structure, the formation of functional composites, and the heteroatom doping which succeeded in the design of high‐performance cathode catalysts for stable Li–O2 batteries. Perspectives on enhancing the overall electrochemical performance of Li–O2 batteries based on the optimization of the properties and reliability of each part of the battery are also made. This Review sheds some new light on the design of highly active cathode catalysts and the development of high‐performance lithium–O2 batteries.  相似文献   

7.
To achieve a high reversibility and long cycle life for Li–O2 battery system, the stable tissue‐directed/reinforced bifunctional separator/protection film (TBF) is in situ fabricated on the surface of metallic lithium anode. It is shown that a Li–O2 cell composed of the TBF‐modified lithium anodes exhibits an excellent anodic reversibility (300 cycles) and effectively improved cathodic long lifetime (106 cycles). The improvement is attributed to the ability of the TBF, which has chemical, electrochemical, and mechanical stability, to effectively prevent direct contact between the surface of the lithium anode and the highly reactive reduced oxygen species (Li2O2 or its intermediate LiO2) in cell. It is believed that the protection strategy describes here can be easily extended to other next‐generation high energy density batteries using metal as anode including Li–S and Na–O2 batteries.  相似文献   

8.
Lithium metal batteries (such as lithium–sulfur, lithium–air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next‐generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short‐circuit and thermal runaway of the rechargeable batteries. Herein, a dual‐layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual‐layered feature with organic components (ROCO2Li and ROLi) on the top and abundant inorganic components (Li2CO3 and LiF) in the bottom. The dual‐layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite‐free Li metal anode. This work demonstrates the concept of rational construction of dual‐layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes.  相似文献   

9.
High‐performance flexible lithium–oxygen (Li–O2) batteries with excellent safety and stability are urgently required due to the rapid development of flexible and wearable devices. Herein, based on an integrated solid‐state design by taking advantage of component‐interaction between poly(vinylidene fluoride‐co‐hexafluoropropylene) and nanofumed silica in polymer matrix, a stable quasi‐solid‐state electrolyte (PS‐QSE) for the Li–O2 battery is proposed. The as‐assembled Li–O2 battery containing the PS‐QSE exhibits effectively improved anodic reversibility (over 200 cycles, 850 h) and cycling stability of the battery (89 cycles, nearly 900 h). The improvement is attributed to the stability of the PS‐QSE (including electrochemical, chemical, and mechanical stability), as well as the effective protection of lithium anode from aggressive soluble intermediates generated in cathode. Furthermore, it is demonstrated that the interaction among the components plays a pivotal role in modulating the Li‐ion conducting mechanism in the as‐prepared PS‐QSE. Moreover, the pouch‐type PS‐QSE based Li–O2 battery also shows wonderful flexibility, tolerating various deformations thanks to its integrated solid‐state design. Furthermore, holes can be punched through the Li–O2 battery, and it can even be cut into any desired shape, demonstrating exceptional safety. Thus, this type of battery has the potential to meet the demands of tailorability and comformability in flexible and wearable electronics.  相似文献   

10.
The solid‐state Li battery is a promising energy‐storage system that is both safe and features a high energy density. A main obstacle to its application is the poor interface contact between the solid electrodes and the ceramic electrolyte. Surface treatment methods have been proposed to improve the interface of the ceramic electrolytes, but they are generally limited to low‐capacity or short‐term cycling. Herein, an electron/ion dual‐conductive solid framework is proposed by partially dealloying the Li–Mg alloy anode on a garnet‐type solid‐state electrolyte. The Li–Mg alloy framework serves as a solid electron/ion dual‐conductive Li host during cell cycling, in which the Li metal can cycle as a Li‐rich or Li‐deficient alloy anode, free from interface deterioration or volume collapse. Thus, the capacity, current density, and cycle life of the solid Li anode are improved. The cycle capability of this solid anode is demonstrated by cycling for 500 h at 1 mA cm?2, followed by another 500 h at 2 mA cm?2 without short‐circuiting, realizing a record high cumulative capacity of 750 mA h cm?2 for garnet‐type all‐solid‐state Li batteries. This alloy framework with electron/ion dual‐conductive pathways creates the possibility to realize high‐energy solid‐state Li batteries with extended lifespans.  相似文献   

11.
Polymer‐based electrolytes have attracted ever‐increasing attention for all‐solid‐state lithium (Li) metal batteries due to their ionic conductivity, flexibility, and easy assembling into batteries, and are expected to overcome safety issues by replacing flammable liquid electrolytes. However, it is still a critical challenge to effectively block Li dendrite growth and improve the long‐term cycling stability of all‐solid‐state batteries with polymer electrolytes. Here, the interface between novel poly(vinylidene difluoride) (PVDF)‐based solid electrolytes and the Li anode is explored via systematical experiments in combination with first‐principles calculations, and it is found that an in situ formed nanoscale interface layer with a stable and uniform mosaic structure can suppress Li dendrite growth. Unlike the typical short‐circuiting that often occurs in most studied poly(ethylene oxide) systems, this interface layer in the PVDF‐based system causes an open‐circuiting feature at high current density and thus avoids the risk of over‐current. The effective self‐suppression of the Li dendrite observed in the PVDF–LiN(SO2F)2 (LiFSI) system enables over 2000 h cycling of repeated Li plating–stripping at 0.1 mA cm?2 and excellent cycling performance in an all‐solid‐state LiCoO2||Li cell with almost no capacity fade after 200 cycles at 0.15 mA cm?2 at 25 °C. These findings will promote the development of safe all‐solid‐state Li metal batteries.  相似文献   

12.
Lithium–sulfur (Li–S) batteries are considered as one of the most potential next‐generation rechargeable batteries due to their high theoretical energy density. However, some critical issues, such as low capacity, poor cycling stability, and safety concerns, must be solved before Li–S batteries can be used practically. During the past decade, tremendous efforts have been devoted to the design and synthesis of electrode materials. Benefiting from their tunable structural parameters, hollow porous carbon materials (HPCM) remarkably enhance the performances of both sulfur cathodes and lithium anodes, promoting the development of high‐performance Li–S batteries. Here, together with the templated synthesis of HPCM, recent progresses of Li–S batteries based on HPCM are reviewed. Several important issues in Li–S batteries, including sulfur loading, polysulfide entrapping, and Li metal protection, are discussed, followed by a summary on recent research on HPCM‐based sulfur cathodes, modified separators, and lithium anodes. After the discussion on emerging technical obstacles toward high‐energy Li–S batteries, prospects for the future directions of HPCM research in the field of Li–S batteries are also proposed.  相似文献   

13.
Lithium–sulfur (Li–S) batteries have attracted much attention in the field of electrochemical energy storage due to their high energy density and low cost. However, the “shuttle effect” of the sulfur cathode, resulting in poor cyclic performance, is a big barrier for the development of Li–S batteries. Herein, a novel sulfur cathode integrating sulfur, flexible carbon cloth, and metal–organic framework (MOF)‐derived N‐doped carbon nanoarrays with embedded CoP (CC@CoP/C) is designed. These unique flexible nanoarrays with embedded polar CoP nanoparticles not only offer enough voids for volume expansion to maintain the structural stability during the electrochemical process, but also promote the physical encapsulation and chemical entrapment of all sulfur species. Such designed CC@CoP/C cathodes with synergistic confinement (physical adsorption and chemical interactions) for soluble intermediate lithium polysulfides possess high sulfur loadings (as high as 4.17 mg cm–2) and exhibit large specific capacities at different C‐rates. Specially, an outstanding long‐term cycling performance can be reached. For example, an ultralow decay of 0.016% per cycle during the whole 600 cycles at a high current density of 2C is displayed. The current work provides a promising design strategy for high‐energy‐density Li–S batteries.  相似文献   

14.
Rechargeable lithium‐metal batteries (LMBs) are regarded as the “holy grail” of energy‐storage systems, but the electrolytes that are highly stable with both a lithium‐metal anode and high‐voltage cathodes still remain a great challenge. Here a novel “localized high‐concentration electrolyte” (HCE; 1.2 m lithium bis(fluorosulfonyl)imide in a mixture of dimethyl carbonate/bis(2,2,2‐trifluoroethyl) ether (1:2 by mol)) is reported that enables dendrite‐free cycling of lithium‐metal anodes with high Coulombic efficiency (99.5%) and excellent capacity retention (>80% after 700 cycles) of Li||LiNi1/3Mn1/3Co1/3O2 batteries. Unlike the HCEs reported before, the electrolyte reported in this work exhibits low concentration, low cost, low viscosity, improved conductivity, and good wettability that make LMBs closer to practical applications. The fundamental concept of “localized HCEs” developed in this work can also be applied to other battery systems, sensors, supercapacitors, and other electrochemical systems.  相似文献   

15.
The aprotic Li–O2 battery has attracted a great deal of interest because theoretically it can store more energy than today's Li‐ion batteries. However, current Li–O2 batteries suffer from passivation/clogging of the cathode by discharged Li2O2, high charging voltage for its subsequent oxidation, and accumulation of side reaction products (particularly Li2CO3 and LiOH) upon cycling. Here, an advanced Li–O2 battery with a hexamethylphosphoramide (HMPA) electrolyte is reported that can dissolve Li2O2, Li2CO3, and LiOH up to 0.35, 0.36, and 1.11 × 10?3m , respectively, and a LiPON‐protected lithium anode that can be reversibly cycled in the HMPA electrolyte. Compared to the benchmark of ether‐based Li–O2 batteries, improved capacity, rate capability, voltaic efficiency, and cycle life are achieved for the HMPA‐based Li–O2 cells. More importantly, a combination of advanced research techniques provide compelling evidence that operation of the HMPA‐based Li–O2 battery is backed by nearly reversible formation/decomposition of Li2O2 with negligible side reactions.  相似文献   

16.
To meet the increasing demands for portable and flexible devices in a rapidly developing society, it is urgently required to develop highly safe and flexible electrochemical energy‐storage systems. Flexible lithium–oxygen batteries with high theoretical specific energy density are promising candidates; however, the conventional half‐open structure design prevents it from working properly under water or fire conditions. Herein, as a proof‐of‐concept experiment, a highly safe flexible lithium–oxygen battery achieved by the synergy of a vital multifunctional structure design and a unique composite separator is proposed and fabricated. The structure can effectively prevent the invasion of water from the environment and combustion, which is further significantly consolidated with the help of a polyimide and poly(vinylidene fluoride‐co‐hexafluoropropylene) composite separator, which holds good water resistance, thermal stability, and ionic conductivity. Unexpectedly, the obtained lithium–oxygen battery exhibits superior flexibility, water resistance, thermal resistance, and cycling stability (up to 218 cycles; at a high current of 1 mA and capacity of 4 mA h). This novel water/fireproof, flexible lithium–oxygen battery is a promising candidate to power underwater flexible electronics.  相似文献   

17.
Metallic lithium (Li), considered as the ultimate anode, is expected to promise high‐energy rechargeable batteries. However, owing to the continuous Li consumption during the repeated Li plating/stripping cycling, excess amount of the Li metal anode is commonly utilized in lithium‐metal batteries (LMBs), leading to reduced energy density and increased cost. Here, an all‐solid‐state lithium‐metal battery (ASSLMB) based on a garnet‐oxide solid electrolyte with an ultralow negative/positive electrode capacity ratio (N/P ratio) is reported. Compared with the counterpart using a liquid electrolyte at the same low N/P ratios, ASSLMBs show longer cycling life, which is attributed to the higher Coulombic efficiency maintained during cycling. The effect of the species of the interface layer on the cycling performance of ASSLMBs with low N/P ratio is also studied. Importantly, it is demonstrated that the ASSLMB using a limited Li metal anode paired with a LiFePO4 cathode (5.9 N/P ratio) delivers a stable long‐term cycling performance at room temperature. Furthermore, it is revealed that enhanced specific energies for ASSLMBs with low N/P ratios can be further achieved by the use of a high‐voltage or high mass‐loading cathode. This study sheds light on the practical high‐energy all‐solid‐state batteries under the constrained condition of a limited Li metal anode.  相似文献   

18.
Lithium metal is an ultimate anode in “next‐generation” rechargeable batteries, such as Li–sulfur batteries and Li–air (Li–O2) batteries. However, uncontrollable dendritic Li growth and water attack have prevented its practical applications, especially for open‐system Li–O2 batteries. Here, it is reported that the issues can be addressed via the facile process of immersing the Li metal in organic GeCl4–THF steam for several minutes before battery assembly. This creates a 1.5 µm thick protection layer composed of Ge, GeOx, Li2CO3, LiOH, LiCl, and Li2O on Li surface that allows stable cycling of Li electrodes both in Li‐symmetrical cells and Li–O2 cells, especially in “moist” electrolytes (with 1000–10 000 ppm H2O) and humid O2 atmosphere (relative humidity (RH) of 45%). This work illustrates a simple and effective way for the unfettered development of Li‐metal‐based batteries.  相似文献   

19.
As soluble catalysts, redox‐mediators (RMs) endow mobility to catalysts for unconstrained access to tethered solid discharge products, lowering the energy barrier for Li2O2 formation/decomposition; however, this desired mobility is accompanied by the undesirable side effect of RM migration to the Li metal anode. The reaction between RMs and Li metal degrades both the Li metal and the RMs, leading to cell deterioration within a few cycles. To extend the cycle life of redox‐mediated Li–O2 batteries, herein graphene oxide (GO) membranes are reported as RM‐blocking separators. It is revealed that the size of GO nanochannels is narrow enough to reject 5,10‐dihydro‐5,10‐dimethylphenazine (DMPZ) while selectively allowing the transport of smaller Li+ ions. The negative surface charges of GO further repel negative ions via Donnan exclusion, greatly improving the lithium ion transference number. The Li–O2 cells with GO membranes efficiently harness the redox‐mediation activity of DMPZ for improved performance, achieving energy efficiency of above 80% for more than 25 cycles, and 90% for 78 cycles when the capacity limits were 0.75 and 0.5 mAh cm‐2, respectively. Considering the facile preparation of GO membranes, RM‐sieving GO membranes can be cost‐effective and processable functional separators in Li–O2 batteries.  相似文献   

20.
The reversible electrochemical transformation from lithium (Li) and sulfur (S) into Li2S through multielectron reactions can be utilized in secondary Li–S batteries with very high energy density. However, both the low Coulombic efficiency and severe capacity degradation limits the full utilization of active sulfur, which hinders the practical applications of Li–S battery system. The present study reports a ternary‐layered separator with a macroporous polypropylene (PP) matrix layer, graphene oxide (GO) barrier layer, and Nafion retarding layer as the separator for Li–S batteries with high Coulombic efficiency and superior cyclic stability. In the ternary‐layered separator, ultrathin layer of GO (0.0032 mg cm?2, estimated to be around 40 layers) blocks the macropores of PP matrix, and a dense ion selective Nafion layer with a very low loading amount of 0.05 mg cm?2 is attached as a retarding layer to suppress the crossover of sulfur‐containing species. The ternary‐layered separators are effective in improving the initial capacity and the Coulombic efficiency of Li–S cells from 969 to 1057 mAh g?1, and from 80% to over 95% with an LiNO3‐free electrolyte, respectively. The capacity degradation is reduced from 0.34% to 0.18% per cycle within 200 cycles when the PP separator is replaced by the ternary‐layered separators. This work provides the rational design strategy for multifunctional separators at cell scale to effective utilizing of active sulfur and retarding of polysulfides, which offers the possibility of high energy density Li–S cells with long cycling life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号