首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Recent experiments in function mechanism study reported that a pH low-insertion peptide (pHLIP) can insert into a zwitterionic palmitoyloleoylphosphatidylcholine (POPC) lipid bilayer at acidic pH while binding to the bilayer surface at basic pH. However, the atomic details of the pH-dependent interaction of pHLIP with a POPC bilayer are not well understood. In this study, we investigate the detailed interactions of pHLIP with a POPC bilayer at acidic and basic pH conditions as those used in function mechanism study, using all-atom molecular dynamics (MD) simulations. Simulations have been performed by employing the initial configurations, where pHLIP is placed in aqueous solution, parallel to bilayer surface (system S), partially-inserted (system P), or fully-inserted (system F) in POPC bilayers. On the basis of multiple 200-ns MD simulations, we found (1) pHLIP in system S can spontaneously insert into a POPC bilayer at acidic pH, while binding to the membrane surface at basic pH; (2) pHLIP in system P can insert deep into a POPC bilayer at acidic pH, while it has a tendency to exit, and stays at bilayer surface at basic pH; (3) pHLIP in system F keeps in an α-helical structure at acidic pH while partially unfolding at basic pH. This study provides at atomic-level the pH-induced insertion of pHLIP into POPC bilayer.  相似文献   

2.
The transition between strong and weak interactions of the kinesin head with the microtubule, which is regulated by the change of the nucleotide state of the head, is indispensable for the processive motion of the kinesin molecular motor on the microtubule. Here, using all-atom molecular dynamics simulations, the interactions between the kinesin head and tubulin are studied on the basis of the available high-resolution structural data. We found that the strong interaction can induce rapid large conformational changes of the tubulin, whereas the weak interaction cannot. Furthermore, we found that the large conformational changes of the tubulin have a significant effect on the interaction of the tubulin with the head in the weak-microtubule-binding ADP state. The calculated binding energy of the ADP-bound head to the tubulin with the large conformational changes is only about half that of the tubulin without the conformational changes.  相似文献   

3.
Cold-adapted enzymes feature a lower thermostability and higher catalytic activity compared to their warm-active homologues, which are considered as a consequence of increased flexibility of their molecular structures. The complexity of the (thermo)stability-flexibility-activity relationship makes it difficult to define the strategies and formulate a general theory for enzyme cold adaptation. Here, the psychrophilic serine hydroxymethyltransferase (pSHMT) from Psychromonas ingrahamii and its mesophilic counterpart, mSHMT from Escherichia coli, were subjected to μs-scale multiple-replica molecular dynamics (MD) simulations to explore the cold-adaptation mechanism of the dimeric SHMT. The comparative analyses of MD trajectories reveal that pSHMT exhibits larger structural fluctuations and inter-monomer positional movements, a higher global flexibility, and considerably enhanced local flexibility involving the surface loops and active sites. The largest-amplitude motion mode of pSHMT describes the trends of inter-monomer dissociation and enlargement of the active-site cavity, whereas that of mSHMT characterizes the opposite trends. Based on the comparison of the calculated structural parameters and constructed free energy landscapes (FELs) between the two enzymes, we discuss in-depth the physicochemical principles underlying the stability-flexibility-activity relationships and conclude that (i) pSHMT adopts the global-flexibility mechanism to adapt to the cold environment and, (ii) optimizing the protein-solvent interactions and loosening the inter-monomer association are the main strategies for pSHMT to enhance its flexibility.  相似文献   

4.
We studied and compared in detail an elusive matrix open (m-state) and cytoplasmic open (c-state) state of ADP/ATP carrier (AAC) protein embedded in the DOPC bilayer by microsecond molecular dynamics (MD) simulations. We analyzed both states with and without cardiolipin (CDL) molecules, with a special emphasis on the recently obtained crystallographic structure of the AAC m-state. The obtained results show that both states of the protein are stable in the DOPC bilayer and impermeable to water. In comparison with the c-state of AAC, the m-state is more dynamic, but at the same time possesses a larger occluded area in the protein cavity. Both states of the protein are less flexible in simulations when CDL molecules are present, which is especially visible for the m-state. Finally, the analysis of the protein conformational changes during MD simulations shows that protein parts at the protein/lipid boundaries are prone to larger conformational changes in contrast to central region of the protein embedded in the bilayer core, thus further supporting the cycling mechanism suggested for ADP/ATP exchange by AAC.  相似文献   

5.
Inhibition of p53-MDM2/MDMX interaction is considered to be a promising strategy for anticancer drug design to activate wild-type p53 in tumors. We carry out molecular dynamics (MD) simulations to study the binding mechanisms of peptide and non-peptide inhibitors to MDM2/MDMX. The rank of binding free energies calculated by molecular mechanics generalized Born surface area (MM-GBSA) method agrees with one of the experimental values. The results suggest that van der Waals energy drives two kinds of inhibitors to MDM2/MDMX. We also find that the peptide inhibitors can produce more interaction contacts with MDM2/MDMX than the non-peptide inhibitors. Binding mode predictions based on the inhibitor-residue interactions show that the π-π, CH-π and CH-CH interactions dominated by shape complimentarity, govern the binding of the inhibitors in the hydrophobic cleft of MDM2/MDMX. Our studies confirm the residue Tyr99 in MDMX can generate a steric clash with the inhibitors due to energy and structure. This finding may theoretically provide help to develop potent dual-specific or MDMX inhibitors.  相似文献   

6.
SMYD3 is a SET-domain-containing methyltransferase that catalyzes the transfer of methyl groups onto lysine residues of substrate proteins. Methylation of MAP3K2 by SMYD3 has been implicated in Ras-driven tumorigenesis, which makes SMYD3 a potential target for cancer therapy. Of all SMYD family proteins, SMYD3 adopt a closed conformation in a crystal structure. Several studies have suggested that the conformational changes between the open and closed forms may regulate the catalytic activity of SMYD3. In this work, we carried out extensive molecular dynamics simulations on a series of complexes with a total of 21 μs sampling to investigate the conformational changes of SMYD3 and unveil the molecular mechanisms. Based on the C-terminal domain movements, the simulated models could be depicted in three different conformational states: the closed, intermediate and open states. Only in the case that both the methyl donor binding pocket and the target lysine-binding channel had bound species did the simulations show SMYD3 maintaining its conformation in the closed state, indicative of a synergetic effect of the cofactors and target lysine on regulating the conformational change of SMYD3. In addition, we performed analyses in terms of structure and energy to shed light on how the two regions might regulate the C-terminal domain movement. This mechanistic study provided insights into the relationship between the conformational change and the methyltransferase activity of SMYD3. The more complete understanding of the conformational dynamics developed here together with further work may lay a foundation for the rational drug design of SMYD3 inhibitors.  相似文献   

7.
This paper presents studies on the characteristics of gas molecular mean free path in nanopores by molecular dynamics simulation. Our study results indicate that the mean free path of all molecules in nanopores depend on both the radius of the nanopore and the gas-solid interaction strength. Besides mean free path of all molecules in the nanopore, this paper highlights the gas molecular mean free path at different positions of the nanopore and the anisotropy of the gas molecular mean free path at nanopores. The molecular mean free path varies with the molecule’s distance from the center of the nanopore. The least value of the mean free path occurs at the wall surface of the nanopore. The present paper found that the gas molecular mean free path is anisotropic when gas is confined in nanopores. The radial gas molecular mean free path is much smaller than the mean free path including all molecular collisions occuring in three directions. Our study results also indicate that when gas is confined in nanopores the gas molecule number density does not affect the gas molecular mean free path in the same way as it does for the gas in unbounded space. These study results may bring new insights into understanding the gas flow’s characteristic at nanoscale.  相似文献   

8.
Cyclodextrins (CDs) are highly respected for their ability to form inclusion complexes via host–guest noncovalent interactions and, thus, ensofance other molecular properties. Various molecular modeling methods have found their applications in the analysis of those complexes. However, as showed in this review, molecular dynamics (MD) simulations could provide the information unobtainable by any other means. It is therefore not surprising that published works on MD simulations used in this field have rapidly increased since the early 2010s. This review provides an overview of the successful applications of MD simulations in the studies on CD complexes. Information that is crucial for MD simulations, such as application of force fields, the length of the simulation, or solvent treatment method, are thoroughly discussed. Therefore, this work can serve as a guide to properly set up such calculations and analyze their results.  相似文献   

9.
This article illustrates by examples the limited acceptance by biologists of predictions made with molecular dynamics simulations of biomolecules. Its purpose is to increase the awareness of biologists of the contribution that simulations can make to our understanding of biomolecule function.  相似文献   

10.
Self-diffusion coefficients of exponential-six fluids are studied using equilibrium molecular dynamics simulation technique. Mean-square displacements and velocity autocorrelation functions are used to calculate self-diffusion coefficients through Einstein equation and Green-Kubo formula. It has been found that simulation results are in good agreement with experimental data for liquid argon which is taken as exponential-six fluid. The effects of density, temperature and steepness factor for repulsive part of exponential-six potential on self-diffusion coefficients are also investigated. The simulation results indicate that the self-diffusion coefficient of exponential-six fluid increases as temperature increases and density decreases. In addition, the larger self-diffusion coefficients are obtained as the steepness factor increases at the same temperature and density condition.  相似文献   

11.
Borneol, known as a “guide” drug in traditional Chinese medicine, is widely used as a natural penetration enhancer in modern clinical applications. Despite a large number of experimental studies on borneol’s penetration enhancing effect, the molecular basis of its action on bio-membranes is still unclear. We carried out a series of coarse-grained molecular dynamics simulations with the borneol concentration ranging from 3.31% to 54.59% (v/v, lipid-free basis) to study the interactions of borneol with aDPPC(1,2-dipalmitoylsn-glycero-3-phosphatidylcholine) bilayer membrane, and the temperature effects were also considered. At concentrations below 21.89%, borneol’s presence only caused DPPC bilayer thinning and an increase in fluidity; A rise in temperature could promote the diffusing progress of borneol. When the concentration was 21.89% or above, inverted micelle-like structures were formed within the bilayer interior, which led to increased bilayer thickness, and an optimum temperature was found for the interaction of borneol with the DPPC bilayer membrane. These findings revealed that the choice of optimal concentration and temperature is critical for a given application in which borneol is used as a penetration enhancer. Our results not only clarify some molecular basis for borneol’s penetration enhancing effects, but also provide some guidance for the development and applications of new preparations containing borneol.  相似文献   

12.
Förster resonance energy transfer (FRET) is a powerful tool used for many problems in membrane biophysics, including characterization of the lateral distribution of lipid components and other species of interest. However, quantitative analysis of FRET data with a topological model requires adequate choices for the values of several input parameters, some of which are difficult to obtain experimentally in an independent manner. For this purpose, atomistic molecular dynamics (MD) simulations can be potentially useful as they provide direct detailed information on transverse probe localization, relative probe orientation, and membrane surface area, all of which are required for analysis of FRET data. This is illustrated here for the FRET pairs involving 1,6-diphenylhexatriene (DPH) as donor and either 1-palmitoyl,2-(6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino] hexanoyl)- sn-glycero-3-phosphocholine (C6-NBD-PC) or 1-palmitoyl,2-(12-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]dodecanoyl)-sn-glycero-3-phosphocholine (C12-NBD-PC) as acceptors, in fluid vesicles of 1,2-dipalmitoyl-sn-3-glycerophosphocholine (DPPC, 50 °C). Incorporation of results from MD simulations improves the statistical quality of model fitting to the experimental FRET data. Furthermore, the decay of DPH in the presence of moderate amounts of C12-NBD-PC (>0.4 mol%) is consistent with non-random lateral distribution of the latter, at variance with C6-NBD-PC, for which aggregation is ruled out up to 2.5 mol% concentration. These conclusions are supported by analysis of NBD-PC fluorescence self-quenching. Implications regarding the relative utility of these probes in membrane studies are discussed.  相似文献   

13.
In view of the possible medical applications of saponins, the molecular structure of a GOTCAB saponin from the roots of Gypsophila paniculata L. was determined by NMR. The biological activity of saponins may depend on the interaction with cell membranes. To obtain more insight in the mechanism of membrane-related saponin function, an experimental and theoretical study was conducted. Ternary lipid systems composed of sphingomyelin, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, and cholesterol were used as models of mammalian cell membranes. The membrane–saponin interaction was studied experimentally by monitoring surface pressure in the monomolecular films formed at the air–aqueous subphase interface. The behavior of GOTCAB saponin in a water box and model monolayer systems was characterized by molecular dynamics simulations. The results obtained showed that, in the systems used, cholesterol had a decisive effect on the interaction between GOTCAB and phosphocholine or sphingomyelin as well as on its location within the lipid film.  相似文献   

14.
Amphiphilic diisobutylene/maleic acid (DIBMA) copolymers extract lipid-encased membrane proteins from lipid bilayers in a detergent-free manner, yielding nanosized, discoidal DIBMA lipid particles (DIBMALPs). Depending on the DIBMA/lipid ratio, the size of DIBMALPs can be broadly varied which makes them suitable for the incorporation of proteins of different sizes. Here, we examine the influence of the DIBMALP sizes and the presence of protein on the dynamics of encased lipids. As shown by a set of biophysical methods, the stability of DIBMALPs remains unaffected at different DIBMA/lipid ratios. Coarse-grained molecular dynamics simulations confirm the formation of viable DIBMALPs with an overall size of up to 35 nm. Electron paramagnetic resonance spectroscopy of nitroxides located at the 5th, 12th or 16th carbon atom positions in phosphatidylcholine-based spin labels reveals that the dynamics of enclosed lipids are not altered by the DIBMALP size. The presence of the membrane protein sensory rhodopsin II from Natronomonas pharaonis (NpSRII) results in a slight increase in the lipid dynamics compared to empty DIBMALPs. The light-induced photocycle shows full functionality of DIBMALPs-embedded NpSRII and a significant effect of the protein-to-lipid ratio during preparation on the NpSRII dynamics. This study indicates a possible expansion of the applicability of the DIBMALP technology on studies of membrane protein–protein interaction and oligomerization in a constraining environment.  相似文献   

15.
Thermal stability is a limiting factor for effective application of D-psicose 3-epimerase (DPEase) enzyme. Recently, it was reported that the thermal stability of DPEase was improved by immobilizing enzymes on graphene oxide (GO) nanoparticles. However, the detailed mechanism is not known. In this study, we investigated interaction details between GO and DPEase by performing molecular dynamics (MD) simulations. The results indicated that the domain (K248 to D268) of DPEase was an important anchor for immobilizing DPEase on GO surface. Moreover, the strong interactions between DPEase and GO can prevent loop α1′-α1 and β4-α4 of DPEase from the drastic fluctuation. Since these two loops contained active site residues, the geometry of the active pocket of the enzyme remained stable at high temperature after the DPEase was immobilized by GO, which facilitated efficient catalytic activity of the enzyme. Our research provided a detailed mechanism for the interaction between GO and DPEase at the nano–biology interface.  相似文献   

16.
分子模拟与化学工程   总被引:15,自引:0,他引:15  
从分子水平来研究化工过程及产品的开发和设计是21世纪化学工程的一个重要方向.综述了计算机分子模拟中的MonteCarlo分子模拟和分子动力学模拟两种方法及其在化工中的应用,涉及分子模拟在建立状态方程和研究分子微观结构、相界面、扩散性质等方面的应用进展.指出分子模拟对化学工程的基础研究、工艺过程以及新产品开发将发挥巨大作用.  相似文献   

17.
Computational methods, namely molecular dynamics (MD) simulations in combination with inhomogeneous fluid solvation theory (IFST) were used to retrospectively investigate various cases of ligand structure modifications that led to the displacement of binding site water molecules. Our findings are that water displacement per se is energetically unfavorable in the discussed examples, and that it is merely the fine balance between change in protein–ligand interaction energy, ligand solvation free energies, and binding site solvation free energies that determine if water displacement is favorable or not. We furthermore evaluated if we can reproduce experimental binding affinities by a computational approach combining changes in solvation free energies with changes in protein–ligand interaction energies and entropies. In two of the seven cases, this estimation led to large errors, implying that accurate predictions of relative binding free energies based on solvent thermodynamics is challenging. Nevertheless, MD simulations can provide insight regarding which water molecules can be targeted for displacement.  相似文献   

18.
分子动力学模拟研究NR/BR力学性能和界面相互作用   总被引:1,自引:0,他引:1  
江浩  岳红  刘倩 《中国塑料》2012,(5):64-68
运用分子动力学(MD)方法,模拟研究了天然橡胶(NR)/顺丁橡胶(BR)混合胶体的力学性能,从微观上解释了NR和BR共混后性能得到改善的原因,并通过界面结合能和径向分布函数分析揭示了混合物组分之间的相互作用的本质。结果表明,NR/BR的平均结合能为21.35kJ/mol,除去程序自行产生的能量校正值(-3.64kJ/mol),结合能在数值上近似等于非键能(17.91kJ/mol),表明NR/BR组分界面间的相互作用主要由范德华力构成。  相似文献   

19.
在COMPASS力场下,对高能推进剂NEPE组分PEG/Al球型包覆模型进行了分子动力学模拟。以预测PEG/Al模型结构的静力学性能和界面结合能。模拟结果得出PEG/Al的力学性能(拉伸模量、泊松比、体积模量、剪切模量)及其界面结合能,这对NEPE推进剂体系的进一步研究奠定了理论基础,从而为在推进剂中固体颗粒与黏结剂的脱粘研究提供一定的理论依据。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号