首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Among the phenolic acids tested on the K562 cell line, a model of chronic myeloid leukemia (CML), caffeic acid (CA) was biologically active on sensitive and imatinib (IM)-resistant cells at micro-molar concentration, either in terms of reduction of cell proliferation or triggering of apoptosis. The CA treatment provoked mitochondrial membrane depolarization, genomic DNA fragmentation and phosphatidylserine exposure, hallmarks of apoptosis. Cell cycle analysis following the treatment with comparable cytotoxic concentrations of IM or CA showed marked differences in the distribution profiles. The reduction of cell proliferation by CA administration was associated with increased expression of two cell cycle repressor genes, CDKN1A and CHES1, while IM at a cytotoxic concentration increased the CHES1 but not the CDKN1A expression. In addition, CA treatment affected the proliferation and triggered the apoptosis in IM-resistant cells. Taken together, these data suggested that CA induced the anti-proliferative effect and triggered apoptosis of CML cells by a different mechanism than IM. Finally, the combined administration of IM and CA at suboptimal concentrations evidenced a synergy of action in determining the anti-proliferative effect and triggering apoptosis. The ability of CA to potentiate the anti-leukemic effect of IM highlighted the nutraceutical potential of CA in CML.  相似文献   

2.
A group of organotin(IV) complexes were prepared: [SnCy3(DMNI)] ( 1 ), [SnCy3(BZDO)] ( 2 ), [SnCy3(DMFU)] ( 3 ), and [SnPh2(BZDO)2] ( 4 ), for which DMNIH=2,6‐dimethoxynicotinic acid, BZDOH=1,4‐benzodioxane‐6‐carboxylic acid, and DMFUH=2,5‐dimethyl‐3‐furoic acid. The cytotoxic activities of compounds 1 – 4 were tested against pancreatic carcinoma (PANC‐1), erythroleukemia (K562), and two glioblastoma multiform (U87 and LN‐229) human cell lines; they show very high antiproliferative activity, with IC50 values in the 150–700 nM range after incubation for 72 h. Distribution of cellular DNA upon treatment with 1 – 4 revealed that whereas compounds 1 – 3 induce apoptosis in most of the cell lines, compound 4 does not affect cell viability in any cell line tested, indicating a possible difference in cytotoxic mechanism. Studies with the daunomycin‐resistant K562/R cell line expressing P‐glycoprotein (Pgp) showed that compounds 1 – 4 are not substrates of this protein efflux pump, indicating that these compounds do not induce acquisition of multidrug resistance, which is associated with the overexpression of Pgp.  相似文献   

3.
Semi-synthetic triterpenoids, holding an amino substituted seven-membered A-ring (azepano-ring), which could be synthesized from triterpenic oximes through a Beckmann type rearrangement followed by a reduction of lactame fragment, are considered to be novel promising agents exhibiting anti-microbial, alpha-glucosidase, and butyrylcholinesterase inhibitory activities. In this study, in an attempt to develop new antitumor candidates, a series of A-ring azepano- and 3-amino-3,4-seco-derivatives of betulin, oleanolic, ursolic, and glycyrrhetinic acids were evaluated for their cytotoxic activity against five human cancer cell lines and non-malignant mouse fibroblasts by means of a colorimetric sulforhodamine assay. Azepanoallobetulinic acid amide derivative 11 was the most cytotoxic compound of this series but showed little selectivity between the different human tumor cell lines. Flow cytometry experiments showed compound 11 to act mainly by apoptosis (44.3%) and late apoptosis (21.4%). The compounds were further screened at the National Cancer Institute towards a panel of 60 cancer cell lines. It was found that compounds 3, 4, 7, 8, 9, 11, 15, 16, 19, and 20 showed growth inhibitory (GI50) against the most sensitive cell lines at submicromolar concentrations (0.20–0.94 μM), and their cytotoxic activity (LC50) was also high (1–6 μM). Derivatives 3, 8, 11, 15, and 16 demonstrated a certain selectivity profile at GI50 level from 5.16 to 9.56 towards K-562, CCRF-CEM, HL-60(TB), and RPMI-8226 (Leukemia), HT29 (Colon cancer), and OVCAR-4 (Ovarian cancer) cell lines. Selectivity indexes of azepanoerythrodiol 3 at TGI level ranged from 5.93 (CNS cancer cell lines SF-539, SNB-19 and SNB-75) to 14.89 for HCT-116 (colon cancer) with SI 9.56 at GI50 level for the leukemia cell line K-562. The present study highlighted the importance of A-azepano-ring in the triterpenic core for the development of novel antitumor agents, and a future aim to increase the selectivity profile will thus lie in the area of modifications of azepano-triterpenic acids at their carboxyl group.  相似文献   

4.
The hitherto unknown 2-methylsulfanyldecanoic acid and 2-methylsulfanyldodecanoic acid were synthesized from methyl decanoate and methyl dodecanoate, respectively, through the reaction of lithium diisopropylamide and dimethyldisulfide in THF followed by saponification with potassium hydroxide in ethanol. Both α-methylsulfanylated FA were cytotoxic to the human chronic myelogenous leukemia K-562 and the human histiocytic lymphoma U-937 cell lines with EC50 values in the 200–300 μM range, which makes them more cytotoxic to these cell lines than decanoic and/or dodecanoic acid. The cytotoxicity of the studied FA toward K-562 followed the order 2-SCH3-12∶0>2-SCH3-10∶0>10∶0>12∶0>2-OCH3-12∶0, whereas toward U-937 the cytotoxicity was 2-SCH3-10∶0>2-SCH3-12∶0>12∶0>10∶0>2-OCH3-12∶0. These results indicate that the α-methylsulfanyl substitution increases the cytotoxicity of the C10 and C12 FA toward the studied leukemia cell lines.  相似文献   

5.
Eriobotrya japonica leaf is a traditional herbal medicine that contains numerous triterpenes, which have various pharmacological properties. In this study, we investigated the anti-proliferative activity of four triterpenes derived from E. japonica, including corosolic acid (CA), ursolic acid (UA), maslinic acid (MA) and oleanolic acid (OA), in human leukemia cell lines. CA showed the strongest anti-proliferative activity in all of the leukemia cell lines tested, but not in normal human skin fibroblast cell lines. To determine the mechanism underlying the anti-proliferative effect of CA, we examined the effect of CA on molecular events known as apoptosis induction. CA induced chromatin condensation, DNA fragmentation, sub-G1 phase DNA, activation of caspase-3, -8 and -9 and the cleavage of PARP in HL-60. CA also activated Bid and Bax, leading to the loss of mitochondrial membrane potential (Δψm) and cytochrome c release into the cytosol, whereas Bcl-2 and Bcl-xL were unaffected by CA. These results suggest that CA has an anti-proliferative effect on leukemia cells via the induction of apoptosis mediated by mitochondrial dysfunction and caspase activation. CA may be a potential chemotherapeutic agent for the treatment of human leukemia.  相似文献   

6.
Leukemia is a type of blood cancer caused by the rapid proliferation of abnormal white blood cells. Currently, several treatment options, including chemotherapy, radiation therapy, and bone marrow transplantation, are used to treat leukemia, but the morbidity and mortality rates of patients with leukemia are still high. Therefore, there is still a need to develop more selective and less toxic drugs for the effective treatment of leukemia. Ampelopsin, also known as dihydromyricetin, is a plant-derived flavonoid that possesses multiple pharmacological functions, including antibacterial, anti-inflammatory, antioxidative, antiangiogenic, and anticancer activities. However, the anticancer effect and mechanism of action of ampelopsin in leukemia remain unclear. In this study, we evaluated the antileukemic effect of ampelopsin against acute promyelocytic HL60 and chronic myelogenous K562 leukemia cells. Ampelopsin significantly inhibited the proliferation of both leukemia cell lines at concentrations that did not affect normal cell viability. Ampelopsin induced cell cycle arrest at the sub-G1 phase in HL60 cells but the S phase in K562 cells. In addition, ampelopsin regulated the expression of cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors differently in each leukemia cell. Ampelopsin also induced apoptosis in both leukemia cell lines through nuclear condensation, loss of mitochondrial membrane potential, increase in reactive oxygen species (ROS) generation, activation of caspase-9, caspase-3, and poly ADP-ribose polymerase (PARP), and regulation of Bcl-2 family members. Furthermore, the antileukemic effect of ampelopsin was associated with the downregulation of AKT and NF-κB signaling pathways. Moreover, ampelopsin suppressed the expression levels of leukemia stemness markers, such as Oct4, Sox2, CD44, and CD133. Taken together, our findings suggest that ampelopsin may be an attractive chemotherapeutic agent against leukemia.  相似文献   

7.
Axenic fermentation on solid rice of the saprobic fungus Sparticola junci afforded two new highly oxidized naphthalenoid polyketide derivatives, sparticatechol A (1) and sparticolin H (2) along with sparticolin A (3). The structures of 1 and 2 were elucidated on the basis of their NMR and HR-ESIMS spectroscopic data. Assignment of absolute configurations was performed using electronic circular dichroism (ECD) experiments and Time-Dependent Density Functional Theory (TDDFT) calculations. Compounds 1–3 were evaluated for COX inhibitory, antiproliferative, cytotoxic and antimicrobial activities. Compounds 1 and 2 exhibited strong inhibitory activities against COX-1 and COX-2. Molecular docking analysis of 1 conferred favorable binding against COX-2. Sparticolin H (2) and A (3) showed a moderate antiproliferative effect against myelogenous leukemia K-562 cells and weak cytotoxicity against HeLa and mouse fibroblast cells.  相似文献   

8.
New strategies to eradicate cancer stem cells in chronic myeloid leukemia (CML) include a combination of imatinib with peroxisome proliferator-activated receptor gamma (PPARγ) ligands. Recently, we identified the partial PPARγ agonist telmisartan as effective sensitizer of resistant K562 CML cells to imatinib treatment. Here, the importance of the heterocyclic core on the cell death-modulating effects of the telmisartan-derived lead 4′-((2-propyl-1H-benzo[d]imidazol-1-yl)methyl)-[1,1′-biphenyl]-2-carboxylic acid ( 3 b ) was investigated. Inspired by the pharmacodynamics of HYL-6d and the selective PPARγ ligand VSP-51, the benzimidazole was replaced by a carbazole or an indole core. The results indicate no correlation between PPARγ activation and sensitization of resistant CML cells to imatinib. The 2-COOH derivatives of the carbazoles or indoles achieved low activity at PPARγ, while the benzimidazoles showed 60-100 % activation. Among the 2-CO2CH3 derivatives, only the ester of the lead ( 2 b ) slightly activated PPARγ. Sensitizing effects were further observed for this non-cytotoxic 2 b (80 % cell death), and to a lesser extent for the lead 3 b or the 5-Br-substituted ester of the benzimidazoles ( 5 b ).  相似文献   

9.
A simple method for the preparation of cis-dichloro(1,4,7-triazacyclononane)platinum(II), cis-Pt(tacn)Cl(2) is presented, together with the results of screening the compound against the K-562 (leukemia) and SK-OV-3 (ovarian) human cancer cell lines. While the compound shows no activity against K-562 cells, there is evidence for some cytotoxicity against SK-OV-3. The compound is much less effective than cisplatin, and its limited solubility restricts the useable concentration range.  相似文献   

10.
Cellular lipid metabolism, lipoprotein interactions, and liver X receptor (LXR) activation have been implicated in the pathophysiology and treatment of cancer, although findings vary across cancer models and by lipoprotein profiles. In this study, we investigated the effects of human-derived low-density lipoproteins (LDL), high-density lipoproteins (HDL), and HDL-associated proteins apolipoprotein A1 (apoA1) and serum amyloid A (SAA) on markers of viability, cholesterol flux, and differentiation in K562 cells—a bone marrow-derived, stem-like erythroleukemia cell model of chronic myelogenous leukemia (CML). We further evaluated whether lipoprotein-mediated effects were altered by concomitant LXR activation. We observed that LDL promoted higher K562 cell viability in a dose- and time-dependent manner and increased cellular cholesterol concentrations, while LXR activation by the agonist TO901317 ablated these effects. LXR activation in the presence of HDL, apoA1 and SAA-rich HDL suppressed K562 cell viability, while robustly inducing mRNA expression of ATP-binding cassette transporter A1 (ABCA1). HDL and its associated proteins additionally suppressed mRNA expression of anti-apoptotic B-cell lymphoma-extra large (BCL-xL), and the erythroid lineage marker 5′-aminolevulinate synthase 2 (ALAS2), while SAA-rich HDL induced mRNA expression of the megakaryocytic lineage marker integrin subunit alpha 2b (ITGA2B). Together, these findings suggest that lipoproteins and LXR may impact the viability and characteristics of CML cells.  相似文献   

11.
Herein we report the discovery of compound 6 [KST016366; 4‐((2‐(3‐(4‐((4‐ethylpiperazin‐1‐yl)methyl)‐3‐(trifluoromethyl)phenyl)ureido)benzo[d]thiazol‐6‐yl)oxy)picolinamide] as a new potent multikinase inhibitor through minor structural modification of our previously reported RAF kinase inhibitor A . In vitro anticancer evaluation of 6 showed substantial broad‐spectrum antiproliferative activity against 60 human cancer cell lines. In particular, it showed GI50 values of 51.4 and 19 nm against leukemia K‐562 and colon carcinoma KM12 cell lines, respectively. Kinase screening of compound 6 revealed its nanomolar‐level inhibitory activity of certain oncogenic kinases implicated in both tumorigenesis and angiogenesis. Interestingly, 6 displays IC50 values of 0.82, 3.81, and 53 nm toward Tie2, TrkA, and ABL‐1 (wild‐type and T315I mutant) kinases, respectively. Moreover, 6 is orally bioavailable with a favorable in vivo pharmacokinetic profile. Compound 6 may serve as a promising candidate for further development of potent anticancer chemotherapeutics.  相似文献   

12.
Piptoporus betulinus is a fungus known for its medicinal properties. It possesses antimicrobial, anti-inflammatory, and anti-cancer activity. In this study, several tests were performed to evaluate the cytotoxic effect of the ethanolic extract of Piptoporus betulinus on two melanoma human cell lines, WM115 primary and A375 metastatic cell lines, as well as Hs27 human skin fibroblasts. The extract proved to affect cancer cells in a dose-dependent manner, and at the same time showed a low cytotoxicity towards the normal cells. The total phenolic content (TPC) was determined spectrophotometrically by the Folin-Ciocalteu method (F-C), and the potential antioxidant activity was measured by ferric-reducing antioxidant power (FRAP) assay. One of the active compounds in the extract is betulin. It was isolated and then its cytotoxic activity was compared to the results obtained from the Piptoporus betulinus extract. To further understand the mechanism of action of the extract’s anticancer activity, tests on model cell membranes were conducted. A model membrane of a melanoma cell was designed and consisted of 1,2-dimyristoyl-sn-glycero-3-phosphocholine, disialoganglioside-GD1a and cholesterol: DMPC:GD1a:chol (5:2:3 mole ratio). Changes in a Langmuir monolayer were observed and described based on Π-Amol isotherm and compressibility modulus changes. LB lipid bilayers were deposited on a hydrophilic gold substrate and analyzed by IR and X-ray photoelectron spectroscopy. Our study provides new data on the effect of Piptoporus betulinus extract on melanoma cells and its impact on the model of melanoma plasma membranes.  相似文献   

13.
Fluorescence in situ hybridization (FISH) and Hi-C methods are largely used to investigate the three-dimensional organization of the genome in the cell nucleus and are applied here to study the organization of genes (LMBR1, NOM1, MNX1, UBE3C, PTPRN2) localized in the human 7q36.3 band. This region contains the MNX1 gene, which is normally not expressed in human lymphocytes beyond embryonic development. However, this homeobox gene is frequently activated in leukemic cells and its expression is associated with an altered gene positioning in the leukemia cell nuclei. In this study, we used FISH on 3D-preserved nuclei to investigate the nuclear positioning of MNX1 in the leukemia-derived cell line K562. Of the five copies of the MNX1 gene present in K562, four alleles were positioned in the nuclear periphery and only one in the nuclear interior. Using the Juicebox’s Hi-C dataset, we identified five chromatin loops in the 7q36.3 band, with different extensions related to the size and orientation of the genes located here, and independent from their expression levels. We identified similar loops in 11 human and three mouse cell lines, showing that these loops are highly conserved in different human cell lines and during evolution. Moreover, the chromatin loop organization is well conserved also during neuronal cell differentiation, showing consistency in genomic organization of this region in development. In this report, we show that FISH and Hi-C are two different approaches that complement one another and together give complete information on the nuclear organization of specific chromosomal regions in different conditions, including cellular differentiation and genetic diseases.  相似文献   

14.
The efficient delivery of daunorubicin loaded poly (lactic acid) (PLA)/multiwalled carbon nanotubes (MWCNT)/Fe3O4 composite nanofibers was investigated. The synthesized nanofibers were characterized using SEM, TEM, and XRD analysis. The proliferation inhibition effect of PLA/MWCNT/Fe3O4 nanofibrous scaffolds on leukemia K562 cell lines was investigated. The effect of nanofiber concentration on the daunorubicin delivery in the absence and presence of external magnetic field was also evaluated. The results indicated that the incorporation of daunorubicin into the prepared nanofibrous scaffold under applied magnetic field could have synergistic cytotoxic effect on leukemia cancer cells. The drug release mechanism followed the non-Fickian transport.  相似文献   

15.
16.
Chronic myeloid leukemia (CML) is a hematologic disorder characterized by the oncogene BCR-ABL1, which encodes an oncoprotein with tyrosine kinase activity. Imatinib, a BCR-ABL1 tyrosine kinase inhibitor, performs exceptionally well with minimal toxicity in CML chemotherapy. According to clinical trials, however, 20–30% of CML patients develop resistance to imatinib. Although the best studied resistance mechanisms are BCR-ABL1-dependent, P-glycoprotein (P-gp, a drug efflux transporter) may also contribute significantly. This study aimed to establish an imatinib-resistant human CML cell line, evaluate the role of P-gp in drug resistance, and assess the capacity of ketoconazole to reverse resistance by inhibiting P-gp. The following parameters were determined in both cell lines: cell viability (as the IC50) after exposure to imatinib and imatinib + ketoconazole, P-gp expression (by Western blot and immunofluorescence), the intracellular accumulation of a P-gp substrate (doxorubicin) by flow cytometry, and the percentage of apoptosis (by the Annexin method). In the highly resistant CML cell line obtained, P-gp was overexpressed, and the level of intracellular doxorubicin was low, representing high P-gp activity. Imatinib plus a non-toxic concentration of ketoconazole (10 μM) overcame drug resistance, inhibited P-gp overexpression and its efflux function, increased the intracellular accumulation of doxorubicin, and favored greater apoptosis of CML cells. P-gp contributes substantially to imatinib resistance in CML cells. Ketoconazole reversed CML cell resistance to imatinib by targeting P-gp-related pathways. The repurposing of ketoconazole for CML treatment will likely help patients resistant to imatinib.  相似文献   

17.
Ingenol mebutate possesses significant cytotoxicity and is clinically used to treat actinic keratosis. However, ingenol mebutate undergoes acyl migration which affects its bioactivity. Compound 3-O-angeloyl-20-O-acetyl ingenol (AAI, also known as 20-O-acetyl-ingenol-3-angelate or PEP008) is a synthetic derivative of ingenol mebutate. In this work, we report the AAI synthesis details and demonstrate AAI has higher cytotoxicity than ingenol mebutate in a chronic myeloid leukemia K562 cell line. Our data indicate that the increased activity of AAI originates from the improved intracellular stability of AAI rather than the increased binding affinity between AAI and the target protein protein kinase Cδ (PKCδ). AAI inhibits cell proliferation, induces G2/M phase arrest, disrupts the mitochondrial membrane potential, and stimulates apoptosis, as well as necrosis in K562 cells. Similar to ingenol mebutate, AAI activates PKCδ and extracellular signal regulated kinase (ERK), and inactivates protein kinase B (AKT). Furthermore, AAI also inhibits JAK/STAT3 pathway. Altogether, our studies show that ingenol derivative AAI is cytotoxic to K562 cells and modulates PKCδ/ERK, JAK/STAT3, and AKT signaling pathways. Our work suggests that AAI may be a new candidate of chemotherapeutic agent.  相似文献   

18.
Recent findings on the molecular basis of ovarian cancer development and progression create new opportunities to develop anticancer medications that would affect specific metabolic pathways and decrease side systemic toxicity of conventional treatment. Among new possibilities for cancer chemoprevention, much attention is paid to curcumin—A broad-spectrum anticancer polyphenolic derivative extracted from the rhizome of Curcuma longa L. According to ClinicalTrials.gov at present there are no running pilot studies, which could assess possible therapeutic benefits from curcumin supplementation to patients with primary epithelial ovarian cancer. Therefore, the goal of this review was to evaluate potential preclinical properties of curcumin and its new analogues on the basis of in vivo and in vitro ovarian cancer studies. Curcumin and its different formulations have been shown to display multifunctional mechanisms of anticancer activity, not only in platinum-resistant primary epithelial ovarian cancer, but also in multidrug resistant cancer cells/xenografts models. Curcumin administered together with platinum-taxane chemotherapeutics have been reported to demonstrate synergistic effects, sensitize resistant cells to drugs, and decrease their biologically effective doses. An accumulating body of evidence suggests that curcumin, due to its long-term safety and an excellent profile of side effects should be considered as a beneficial support in ovarian cancer treatment strategies, especially in patients with platinum-resistant primary epithelial recurrent ovarian cancer or multidrug resistant disease. Although the prospect of curcumin and its formulations as anticancer agents in ovarian cancer treatment strategy appears to be challenging, and at the same time promising, there is a further need to evaluate its effectiveness in clinical studies.  相似文献   

19.
Our goal was to examine the anticancer effects of piperine against the resistant human ovarian cancer cells and to explore the molecular mechanisms responsible for its anticancer effects. Our study used drug-sensitive ovarian cancer cell line W1 and its sublines resistant to paclitaxel (PAC) and topotecan (TOP). We analyzed the cytotoxic effect of piperine and cytostatic drugs using an MTT assay. The impact of piperine on protein expression was determined by immunofluorescence and Western blot. We also examined its effect on cell proliferation and migration. We noticed a different level of piperine resistance between cell lines. Piperine increases the cytotoxic effect of PAC and TOP in drug-resistant cells. We observed an increase in PTPRK expression correlated with decreased pTYR level after piperine treatment and downregulation of P-gp and BCRP expression. We also noted a decrease in COL3A1 and TGFBI expression in investigated cell lines and increased COL3A1 expression in media from W1PR2 cells. The expression of Ki67 protein and cell proliferation rate decreased after piperine treatment. Piperine markedly inhibited W1TR cell migration. Piperine can be considered a potential anticancer agent that can increase chemotherapy effectiveness in cancer patients.  相似文献   

20.
Two new 24-homoscalarane sesterterpenoids, felixins F (1) and G (2), were isolated from the sponge Ircinia felix. The structures of new homoscalaranes 1 and 2 were elucidated by extensive spectroscopic methods, particularly with one-dimensional (1D) and two-dimensional (2D) NMR, and, by comparison, the spectral data with those of known analogues. The cytotoxicity of 1 and 2 against the proliferation of a limited panel of tumor cell lines was evaluated and 1 was found to show cytotoxicity toward the leukemia K562, MOLT-4, and SUP-T1 cells (IC50 ≤ 5.0 μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号