首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
将实验动物分为生理盐水组,尼美舒利溶液组及尼美舒利脂质体组,各组动物分别给药,连续21 d,记录小鼠体重和摄食量,考察尼美舒利脂质体对小鼠的体重和摄食量的影响。尼美舒利脂质体组小鼠与尼美舒利溶液组小鼠相比,体重有明显增加,分别为(-1.593±2.413)g、(0.1619±1.481)g;尼美舒利脂质体组小鼠与生理盐水组小鼠、尼美舒利溶液组小鼠相比,摄食量均有明显增加,分别为(43.47±5.791)g、(37.52±8.087)g、(39.29±3.651)g。  相似文献   

2.
3.
4.
We examined the vasoactive effect of estradiol in a rat model of early PCOS and the influence of vitamin D deficiency (VDD). We created a model of chronic hyperandrogenism and VDD in adolescent female Wistar rats (N = 46) with four experimental groups: vitamin D supplemented (T-D+), VDD (T-D-), hyperandrogenic and vitamin D supplemented (T+D+), and hyperandrogenic and VDD (T+D-). T+ groups received an 8-week-long transdermal Androgel treatment, D-animals were on vitamin D-reduced diet and D+ rats were supplemented orally with vitamin D3. Estrogen-induced vasorelaxation of thoracic aorta segments were measured with a wire myograph system with or without the inhibition of endothelial nitric oxide synthase (eNOS) or cyclooxygenase-2 (COX-2). The distribution of estrogen receptor (ER), eNOS and COX-2 in the aortic wall was assessed by immunohistochemistry. VDD aortas showed significantly lower estradiol-induced relaxation independently of androgenic status that was further decreased by COX-2 inhibition. COX-2 inhibition failed to alter vessel function in D+ rats. Inhibition of eNOS abolished the estradiol-induced relaxation in all groups. Changes in vascular function in VDD were accompanied by significantly decreased ER and eNOS staining. Short-term chronic hyperandrogenism failed to, but VDD induced vascular dysfunction, compromised estrogen-dependent vasodilatation and changes in ER and eNOS immunostaining.  相似文献   

5.
Excessive food/energy intake is linked to obesity and metabolic disorders, such as diabetes. The hypothalamus in the brain plays a critical role in the control of food intake and peripheral metabolism. The signaling pathways in hypothalamic neurons that regulate food intake and peripheral metabolism need to be better understood for developing pharmacological interventions to manage eating behavior and obesity. Mammalian target of rapamycin (mTOR), a serine/threonine kinase, is a master regulator of cellular metabolism in different cell types. Pharmacological manipulations of mTOR complex 1 (mTORC1) activity in hypothalamic neurons alter food intake and body weight. Our previous study identified Rheb1 (Ras homolog enriched in brain 1) as an essential activator of mTORC1 activity in the brain. Here we examine whether central Rheb1 regulates food intake and peripheral metabolism through mTORC1 signaling. We find that genetic deletion of Rheb1 in the brain causes a reduction in mTORC1 activity and impairs normal food intake. As a result, Rheb1 knockout mice exhibit hypoglycemia and increased lipid mobilization in adipose tissue and ketogenesis in the liver. Our work highlights the importance of central Rheb1 signaling in euglycemia and energy homeostasis in animals.  相似文献   

6.
7.

Purpose

The purpose of this study was to determine the effects of supplementation with a water-soluble cinnamon extract (Cinnulin PF®) on body composition and features of the metabolic syndrome.

Methods

Twenty-two subjects with prediabetes and the metabolic syndrome (mean ± SD: age, BMI, systolic blood pressure [SBP], fasting blood glucose [FBG]: 46.0 ± 9.7 y; 33.2 ± 9.3 kg/m2; 133 ± 17 mm Hg; 114.3 ± 11.6 mg/dL) were randomly assigned to supplement their diet with either Cinnulin PF® (500 mg/d) or a placebo for 12-weeks. Main outcome measures were changes in FBG, SBP, and body composition measured after 12-weeks of supplementation. The primary statistical analyses consisted of two factor (group × time), repeated-measures ANOVA for between group differences over time. In all analyses, an intent-to-treat approach was used and significance was accepted at P < 0.05.

Results

Subjects in the Cinnulin PF® group had significant decreases in FBG (-8.4%: 116.3 ± 12.8 mg/dL [pre] to 106.5 ± 20.1 mg/dL [post], p < 0.01), SBP (-3.8%: 133 ± 14 mm Hg [pre] to 128 ± 18 mm Hg [post], p < 0.001), and increases in lean mass (+1.1%: 53.7 ± 11.8 kg [pre] to 54.3 ± 11.8 kg [post], p < 0.002) compared with the placebo group. Additionally, within-group analyses uncovered small, but statistically significant decreases in body fat (-0.7%: 37.9 ± 9.2% [pre] to 37.2 ± 8.9% [post], p < 0.02) in the Cinnulin PF® group. No significant changes in clinical blood chemistries were observed between groups over time.

Conclusion

These data support the efficacy of Cinnulin PF® supplementation on reducing FBG and SBP, and improving body composition in men and women with the metabolic syndrome and suggest that this naturally-occurring spice can reduce risk factors associated with diabetes and cardiovascular diseases.  相似文献   

8.
The treatment of type 2 diabetes patients with bromocriptine-QR, a unique, quick release micronized formulation of bromocriptine, improves glycemic control and reduces adverse cardiovascular events. While the improvement of glycemic control is largely the result of improved postprandial hepatic glucose metabolism and insulin action, the mechanisms underlying the drug’s cardioprotective effects are less well defined. Bromocriptine is a sympatholytic dopamine agonist and reduces the elevated sympathetic tone, characteristic of metabolic syndrome and type 2 diabetes, which potentiates elevations of vascular oxidative/nitrosative stress, known to precipitate cardiovascular disease. Therefore, this study investigated the impact of bromocriptine treatment upon biomarkers of vascular oxidative/nitrosative stress (including the pro-oxidative/nitrosative stress enzymes of NADPH oxidase 4, inducible nitric oxide (iNOS), uncoupled endothelial nitric oxide synthase (eNOS), the pro-inflammatory/pro-oxidative marker GTP cyclohydrolase 1 (GTPCH 1), and the pro-vascular health enzyme, soluble guanylate cyclase (sGC) as well as the plasma level of thiobarbituric acid reactive substances (TBARS), a circulating marker of systemic oxidative stress), in hypertensive SHR rats held on a high fat diet to induce metabolic syndrome. Inasmuch as the central nervous system (CNS) dopaminergic activities both regulate and are regulated by CNS circadian pacemaker circuitry, this study also investigated the time-of-day-dependent effects of bromocriptine treatment (10 mg/kg/day at either 13 or 19 h after the onset of light (at the natural waking time or late during the activity period, respectively) among animals held on 14 h daily photoperiods for 16 days upon such vascular biomarkers of vascular redox state, several metabolic syndrome parameters, and mediobasal hypothalamic (MBH) mRNA expression levels of neuropeptides neuropeptide Y (NPY) and agouti-related protein (AgRP) which regulate the peripheral fuel metabolism and of mRNA expression of other MBH glial and neuronal cell genes that support such metabolism regulating neurons in this model system. Such bromocriptine treatment at ZT 13 improved (reduced) biomarkers of vascular oxidative/nitrosative stress including plasma TBARS level, aortic NADPH oxidase 4, iNOS and GTPCH 1 levels, and improved other markers of coupled eNOS function, including increased sGC protein level, relative to controls. However, bromocriptine treatment at ZT 19 produced no improvement in either coupled eNOS function or sGC protein level. Moreover, such ZT 13 bromocriptine treatment reduced several metabolic syndrome parameters including fasting insulin and leptin levels, as well as elevated systolic and diastolic blood pressure, insulin resistance, body fat store levels and liver fat content, however, such effects of ZT 19 bromocriptine treatment were largely absent versus control. Finally, ZT 13 bromocriptine treatment reduced MBH NPY and AgRP mRNA levels and mRNA levels of several MBH glial cell/neuronal genes that code for neuronal support/plasticity proteins (suggesting a shift in neuronal structure/function to a new metabolic control state) while ZT 19 treatment reduced only AgRP, not NPY, and was with very little effect on such MBH glial cell genes expression. These findings indicate that circadian-timed bromocriptine administration at the natural circadian peak of CNS dopaminergic activity (that is diminished in insulin resistant states), but not outside this daily time window when such CNS dopaminergic activity is naturally low, produces widespread improvements in biomarkers of vascular oxidative stress that are associated with the amelioration of metabolic syndrome and reductions in MBH neuropeptides and gene expressions known to facilitate metabolic syndrome. These results of such circadian-timed bromocriptine treatment upon vascular pathology provide potential mechanisms for the observed marked reductions in adverse cardiovascular events with circadian-timed bromocriptine-QR therapy (similarly timed to the onset of daily waking as in this study) of type 2 diabetes subjects and warrant further investigations into related mechanisms and the potential application of such intervention to prediabetes and metabolic syndrome patients as well.  相似文献   

9.
目的观察妊娠期高血压疾病大鼠肾脏组织中乙酰肝素酶的表达变化及低分子量肝素的干预效应,探讨乙酰肝素酶在妊娠期高血压疾病肾脏损害发生过程中的作用。方法建立正常妊娠大鼠模型,妊娠期高血压疾病模型大鼠和低分子量肝素干预大鼠模型,采用免疫组化SABC法测定3组模型孕21d肾脏组织中乙酰肝素酶的表达。结果与正常妊娠组相比,妊娠期高血压疾病模型组大鼠肾脏组织中乙酰肝素酶的表达显著升高(P<0.01),平均动脉压和尿蛋白排泄明显增加(P<0.01)。与妊娠期高血压疾病模型组相比,低分子量肝素干预组大鼠肾脏组织中乙酰肝素酶的表达显著降低(P<0.01),平均动脉压和尿蛋白排泄明显降低(P<0.01)。结论肾脏组织中乙酰肝素酶的表达与妊娠期高血压疾病肾脏损害的发生发展有关,低分子量肝素对妊娠期高血压疾病肾脏损害具有一定的防治作用。  相似文献   

10.
Clinical, epidemiological, and experimental evidence demonstrate non-cancer, cardiovascular, and endocrine effects of ionizing radiation exposure including growth hormone deficiency, obesity, metabolic syndrome, diabetes, and hyperinsulinemia. Insulin-like growth factor-1 (IGF-1) signaling perturbations are implicated in development of cardiovascular disease and metabolic syndrome. The minipig is an emerging model for studying radiation effects given its high analogy to human anatomy and physiology. Here we use a minipig model to study late health effects of radiation by exposing male Göttingen minipigs to 1.9–2.0 Gy X-rays (lower limb tibias spared). Animals were monitored for 120 days following irradiation and blood counts, body weight, heart rate, clinical chemistry parameters, and circulating biomarkers were assessed longitudinally. Collagen deposition, histolopathology, IGF-1 signaling, and mRNA sequencing were evaluated in tissues. Our findings indicate a single exposure induced histopathological changes, attenuated circulating IGF-1, and disrupted cardiac IGF-1 signaling. Electrolytes, lipid profiles, liver and kidney markers, and heart rate and rhythm were also affected. In the heart, collagen deposition was significantly increased and transforming growth factor beta-1 (TGF-beta-1) was induced following irradiation; collagen deposition and fibrosis were also observed in the kidney of irradiated animals. Our findings show Göttingen minipigs are a suitable large animal model to study long-term effects of radiation exposure and radiation-induced inhibition of IGF-1 signaling may play a role in development of late organ injuries.  相似文献   

11.
在分析高职生物食品类专业顶岗实习管理特点的基础上,讨论了高职生物食品类专业顶岗实习网络管理必要性和可行性,提出了高职生物食品类专业定岗实习网络管理的人员素质要求,网络管理的主要内容以及网络管理的注意事项,指出顶岗实习网络管理将因为其高效性和方便性成为高职学生顶岗实习的主要管理途径。  相似文献   

12.
Both the detrimental effect of prenatal exposure to di-(2-ethylhexyl)-phthalate (DEHP) and the beneficial effects of physical exercise on brain functions have been reported. The oxytocin pathway has been implicated in the onset of maternal behaviors. Epigenetic modification of the oxytocin receptor gene (OXTR) through DNA methylation has been associated with the pathogenesis of neuropsychiatric disorders. The purpose of this study was to investigate the effects of prenatal DEHP exposure on oxytocin-regulated maternal behaviors and to examine the protective effect of exercise. Pregnant rats (F0) were fed with vehicle or DEHP during gestation and the offspring females (F1) were assessed for their maternal behaviors by pup retrieval test at postpartum. The results showed that reduced pup retrieval activities without significant alteration of stress responses were observed in the prenatally DEHP-exposed females. Prenatal DEHP exposure decreased the expressions of oxytocin, Oxtr mRNA, and oxytocin receptor, and increased Oxtr methylation in the hypothalamus of postpartum female rats. There were no significant effects of exercise on behavioral, biochemical, and epigenetic measurements. These results suggest that prenatal DEHP exposure has a long-term adverse effect on maternal behaviors; Oxtr hyper-methylation may be a potential epigenetic mechanism for this alteration, which cannot be prevented by physical exercise during childhood.  相似文献   

13.
Metabolic syndrome (MS) is a risk factor for type 2 diabetes mellitus, vascular inflammation, atherosclerosis, and renal, liver, and heart diseases. Non-alcoholic steatohepatitis (NASH) is a progressive representative liver disease and may lead to the irreversible calamities of cirrhosis and hepatocellular carcinoma. Metabolic disorders such as hyperglycemia have been broadly reported to be related to hepatocarcinogenesis in NASH; however, direct evidence of a link between hyperglycemia and carcinogenesis is still lacking. Tsumura Suzuki Obese Diabetic (TSOD) mice spontaneously develop metabolic syndrome, including obesity, insulin resistance, and NASH-like liver phenotype, and eventually develop hepatocellular carcinomas. TSOD mice provide a spontaneous human MS-like model, even with significant individual variations. In this study, we monitored mice in terms of their changes in blood glucose levels, body weights, and pancreatic and liver lesions over time. As a result, liver carcinogenesis was delayed in non-hyperglycemic TSOD mice compared to hyperglycemic mice. Moreover, at the termination point of 40 weeks, liver tumors appeared in 18 of 24 (75%) hyperglycemic TSOD mice; in contrast, they only appeared in 5 of 24 (20.8%) non-hyperglycemic mice. Next, we investigated three kinds of oligosaccharide that could lower blood glucose levels in hyperglycemic TSOD mice. We monitored the levels of blood and urinary glucose and assessed pancreatic lesions among the experimental groups. As expected, significantly lower levels of blood and urinary glucose and smaller deletions of Langerhans cells were found in TSOD mice fed with milk-derived oligosaccharides (galactooligosaccharides and lactosucrose). At the age of 24 weeks, mild steatohepatitis was found in the liver but there was no evidence of liver carcinogenesis. Steatosis in the liver was alleviated in the milk-derived oligosaccharide-administered group. Taken together, suppressing the increase in blood glucose level from a young age prevented susceptible individuals from diabetes and the onset of NAFLD/NASH, as well as carcinogenesis. Milk-derived oligosaccharides showed a lowering effect on blood glucose levels, which may be expected to prevent liver carcinogenesis.  相似文献   

14.
15.
The ideal immunosuppressive regimen should provide for excellent immunosuppression with no side effects. Yet, current immunosuppressive therapy regimens commonly used in clinical applications fail to meet this criterion. One of the complications caused by immunosuppressive drugs is mineralization disorders in hard tissues. In this study, we evaluated the effects of three immunosuppressive therapies used after transplantation on the levels of potassium, iron, chromium, zinc, aluminum, sodium and molybdenum in the bones and teeth of female rats and their offspring. The study was conducted on 32 female Wistar rats, subjected to immunosuppressive regimens (cyclosporine A, mycophenolate mofetil and prednisone; tacrolimus, mycophenolate mofetil and prednisone; and cyclosporine A, everolimus and prednisone). The hard tissues of rats were analyzed using inductively coupled plasma optical emission spectrometry (ICP-OES, ICAP 7400 Duo, Thermo Scientific) equipped with a concentric nebulizer and a cyclonic spray chamber. All the immunosuppressive regimens included in the study affected the concentrations of the studied minerals in hard tissues of female rats and their offspring. The therapy based on cyclosporine A, everolimus and prednisone led to a decline in the levels of iron in bone, zinc in teeth, and molybdenum in the bone and teeth of mothers, while in the offspring, it caused a decline of bone potassium, with a decrease in iron and increase of molybdenum in teeth. Moreover, the regimen caused an increase in aluminum and chromium in the teeth and aluminum in the bones of the offspring, and consequently, it seems to be the therapy with the most negative impact on the mineral metabolism in hard tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号