首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
利用超细磨粒的电泳效应实现一种磨削技术称之为电泳磨削,通过超细磨粒电泳吸附层的研究,阐述电泳磨削的机理,提出了自进给电泳磨削新工艺。通过加工实验介绍电泳磨削技术在硬脆性材料精密加工中的应用。研究结果表明,该加工技术能明显改善脆性材料的表面粗糙度和破损率。  相似文献   

2.
分析塑性方式磨削机理,提出自切深进给电泳磨削的新技术。试验结果表明,该技术能实现光学玻璃材料的塑性方式去除,达到镜面磨削。  相似文献   

3.
磨削参数对超细硬质合金磨削表面粗糙度的影响   总被引:1,自引:0,他引:1  
在使用金刚石砂轮的平面磨床上对超细硬质合金进行了磨削试验研究。通过扫描电子显微镜观察磨削表面形貌和用表面粗糙度测定仪测量磨削表面粗糙度,分析了磨削参数对超细硬质合金磨削表面粗糙度的影响。研究结果表明,同一切深下,超细硬质合金磨削表面粗糙度随砂轮粒度的增大而增大。采用相同粒度砂轮磨削,切深较小时,超细硬质合金磨削表面粗糙度随切深的增加而增大,当切深增大到一定值后,磨削表面粗糙度值逐渐降低。  相似文献   

4.
超高速点磨削相关机理研究   总被引:4,自引:1,他引:3  
结合超高速磨削技术和点磨削工艺,给出对点磨削及其相关技术的理解.建立砂轮磨损和承载等模型,研究发现,与传统外圆磨削相比,点磨削砂轮承载更均匀,寿命更长,磨削性能更佳.由点磨削参数条件下的单颗磨粒成屑试验发现,磨粒的实际切深要比理论切深小,并由单颗磨粒成屑机理给出合理解释.由砂轮连续成屑机理和砂轮相对工件运动轨迹的分析发现,工件轴向进给速度应低于保证良好磨削表面的最小旋切圈数的临界值.点磨削是一种优质的旋切工艺,能够实现较大切深的磨削加工,兼具高材料去除率和高表面质量的优点.由于主轴偏摆,砂轮和工件接触无闭合磨削区,经湿磨试验发现,点磨削接触区内有更大流量的磨削液通过.  相似文献   

5.
利用模压成型技术和真空钎焊技术制备出了磨粒把持力大、力学性能优良的多层钎焊金刚石砂轮;采用在线电解修整技术促使磨钝的磨粒及时脱落,使砂轮在磨削过程中始终保持锋利性;并开展了基于多层钎焊金刚石砂轮在线电解修整技术的超细晶硬质合金精密磨削试验。试验结果表明:在相同磨削条件下,多层钎焊砂轮在线电解修整磨削力较无修整时的磨削力下降了33.7%~57.9%;多层钎焊砂轮在线电解修整磨削技术能有效提高加工表面质量。当进给速度为30 mm/s,磨削深度为15 μm时,无电解磨削加工表面粗糙度为0.35 μm,而在线电解修整磨削表面粗糙度仅为82.1 nm;多层钎焊砂轮在线电解修整磨削残余应力仅为无电解磨削时的38.2%~49.5%。且在线电解修整磨削表面完整性较好,没有出现表面/亚表面裂纹等相关缺陷,可实现超细晶硬质合金等难加工材料的高效精密加工。  相似文献   

6.
本文结合单因素实验和正交实验,研究了从低速到高速磨削条件下,砂轮速度、进给速度、磨削深度、最大未变形磨削厚度以及磨削方式(顺磨或逆磨)对陶瓷结合剂金刚石砂轮磨削超细晶粒硬质合金表面粗糙度的影响规律,分析了影响超细晶粒硬质合金表面加工质量的原因。研究表明,总体来说磨削参数的变化对超细晶粒硬质合金表面粗糙度的影响程度不大。高速磨削时的表面粗糙度相比低速磨削得到了比较明显改善。逆磨时的粗糙度比顺磨大,随砂轮速度增加下降更快。相比传统硬质合金,磨削WC颗粒更细、强度更高的超细晶粒硬质合金的表面粗糙度更低。磨削参数对表面粗糙度的影响程度从小到大依次是磨削深度、砂轮速度和进给速度,实际加工时为同时获得较高的磨除率和表面质量,宜采用高砂轮速度、低进给和大切深的磨削组合。  相似文献   

7.
非调质钢的磨削强化试验   总被引:1,自引:0,他引:1  
磨削强化处理技术是利用磨削热替代高、中频感应淬火热源对钢件表层进行强化处理,将磨削加工与表面强化合为一体。对非调质钢进行磨削强化开展研究,通过变切深和变进给磨削强化试验,研究强化层深度的变化规律,对试件的金相组织进行分析。研究表明非调质钢磨削强化是可行的。  相似文献   

8.
利用单颗金刚石磨粒划擦20Cr Mn Ti齿条试件试验来模拟成形磨削砂粒的磨削过程,采集了划擦过程中的划擦力,分析了划擦法向力和切向力信号的变化趋势,改变划擦深度与进给速度,探讨划擦深度与进给速度对划擦力的影响,研究不同磨粒粒度下的划擦力变化。结果表明:单颗金刚石磨粒划擦20Cr Mn Ti试件时的划擦法向力为驼峰形,而切向力波动更频繁;单颗磨粒的滑擦力随着滑擦深度、进给速度的增大而单调递增;相同条件下磨粒受到的划擦力随着磨料粒度号的增大而减小。  相似文献   

9.
为了了解有序化砂轮磨削钛合金的表面质量,将叶序理论引入到CBN电镀砂轮磨粒的设计当中来,采用紫外线感光干膜作为掩膜感光层来实现在砂轮表面磨粒的排布,利用光刻技术和复合电镀工艺技术制造出磨粒有序排布外圆砂轮,并对钛合金TC4进行磨削实验研究,获得了不同的进给速度及磨削深度对磨粒叶序排布,错位排布,无序排布砂轮磨削表面粗糙度的影响规律.实验结果表明:在相同的磨削条件下,与其它排布砂轮相比,磨粒叶序排布砂轮磨削工件表面得到的粗糙度值最小。  相似文献   

10.
介绍了轴向缓进给磨削加工原理,建立了单颗金刚石磨粒磨削工程陶瓷的仿真模型,并就磨削力在X、Y、Z向上的分力对仿真结果的影响进行分析。最后通过对不同磨削条件下的单颗金刚石磨粒的磨削过程进行仿真,研究了砂轮转速、砂轮轴向进给速度、工件转速,以及磨粒锥角对磨削力的影响。  相似文献   

11.
根据单颗磨粒的切削特点,应用Deform-3D软件对单颗立方氮化硼磨粒磨削加工GH4169合金进行仿真,研究磨削过程中磨削深度和进给量对磨削温度、磨削力、磨削残余应力的影响。仿真研究表明,磨削深度对磨削结果的变化起主导作用,在所选用的磨削参数下,磨削温度介于350~650℃之间,进给方向磨削力最大为26 N,残余应力影响层深度可达60μm。研究结果为立方氮化硼砂轮高效磨削GH4169合金时磨削参数的选择提供了参考。  相似文献   

12.
氮化硅陶瓷球研磨去除机制试验与仿真研究   总被引:1,自引:0,他引:1  
为研究研磨过程中氮化硅陶瓷球的材料去除形式及磨损行为,结合陶瓷材料动态压痕断裂力学理论,进行陶瓷球研磨加工试验,采用超景深三维显微镜和扫描电镜对研磨后陶瓷球表面进行观察,同时建立单颗金刚石磨粒冲击作用有限元模型并进行仿真研究。试验结果表明:氮化硅陶瓷球表面材料去除以脆性断裂去除和粉末化去除为主,陶瓷球表面残留有大量贝壳状缺陷和呈簇状随机分布的粉末化材料区域;研磨过程中,陶瓷球表面存在擦伤、划伤和凹坑等缺陷;磨粒冲击作用时,表面材料会受微切削作用产生破碎去除,同时也会受挤压作用产生脆性断裂去除,当磨粒以滚动方式作用在陶瓷球表面时,陶瓷球表面更容易形成粉末化去除,且材料去除率更高。仿真结果表明:各磨粒冲击作用方式产生的最大等效应力由大到小的顺序为滚动磨粒变切深、滚动磨粒定切深、磨粒挤压、滑动磨粒定切深,其中,滚动磨粒变切深产生的亚表面裂纹最深。  相似文献   

13.
Wafer rotational grinding is widely employed for back-thinning and flattening of semiconducting wafers during the manufacturing process of integrated circuits. Grit cutting depth is a comprehensive indicator that characterizes overall grinding conditions, such as the wheel structure, geometry, abrasive grit size, and grinding parameters. Furthermore, grit cutting depth directly affects wafer surface/subsurface quality, grinding force, and wheel performance. The existing grit cutting depth models for wafer rotational grinding cannot provide reasonable results due to the complex grinding process under extremely small grit cutting depth. In this paper, a new grit cutting depth model for wafer rotational grinding is proposed which considers machining parameters, wheel grit shape, wheel surface topography, effective grit number, and elastic deformation of the wheel grit and the workpiece during the grinding process. In addition, based on grit cutting depth and ground surface roughness relationship, a series of grinding experiments under various grit cutting depths are conducted to produce silicon wafers with various surface roughness values and compare the predictive accuracy of the proposed model and the existing models. The results indicate that predictions obtained by the proposed model are in better agreement with the experimental results, while accuracy is improved by 40%–60% compared to the previous models.  相似文献   

14.
根据工业性切割的需要,对磨料水射流(AWJ)切割机制进行实验研究。通过射流与材料之间的相互作用过程,建立和验证了AWJ切割过程模型,AWJ切割过程主要是通过磨粒对材料的周期性切割磨削和变形磨削完成;验证分析了典型材料的切割特征(切割深度、切口宽度、冲蚀量)与切割变量(水压、靶距、切速等)的关系,以及磨料、材质两大因素的影响。实验研究结果对AWJ切割技术的开发与应用具有指导意义和实用价值。  相似文献   

15.
为了揭示氮化硅陶瓷磨削温度分布规律以及其对表面成形的影响,首先,建立氮化硅陶瓷纳米级切削的分子动力学模型;其次,研究切削过程中切削参数对切削温度的影响,以及加工过程中切削表面变质层的形成过程;最后,对 K 型热电偶测温和表面能谱分析的仿真与实验结果进行对比分析.结果表明:随着金刚石磨粒切削深度和切削速度的增加,原子晶格发生变形和非晶相变过程中时释放的能量增多,从而使切削温度升高;切削高温会引起氮化硅陶瓷发生非晶相变现象,非晶态原子重新与已加工表面断裂的原子键结合形成表面变质层;分子动力学仿真模型可以用来预测氮化硅陶瓷材料实际磨削加工中磨削温度变化情况,对生产加工具有参考价值.  相似文献   

16.
陶瓷CBN砂轮地貌建模与磨削仿真   总被引:2,自引:0,他引:2  
针对砂轮表面上磨粒形状的不规则性、尺寸的不确定性以及分布的随机性特点,采用随机空间平面切分实体的方法生成了具有实际磨粒几何特征的不规则多面体磨粒;提出了虚拟格子法,实现了磨粒空间位置的随机分布,构建了陶瓷CBN砂轮地貌仿真模型;采用有限元法和光滑粒子流体动力学法的耦合方法进行了砂轮地貌模型磨削仿真,通过切削层SPH粒子的运动情况,分析了磨粒的切削机理及工件表面的创成机理。  相似文献   

17.
对砂带磨削中单颗磨粒磨削过程进行了分析与建模,并利用Abaqus软件对具有不同负前角、切削速度与切削深度的单磨粒磨削过程中磨削力和温度的变化进行了仿真。分析结果表明,随着磨粒前角以及磨削深度的增大,磨削力和磨削温度都会增大。当磨削厚度达到一定程度时,将会出现锯齿型切屑,而切削速度对切向力影响较小。  相似文献   

18.
快速点磨削侧边接触层模型及CBN砂轮磨损特性   总被引:1,自引:0,他引:1  
根据点磨削原理和技术特征,讨论薄层CBN砂轮侧边实际接触区在材料去除过程中的作用,建立快速点磨削侧边接触区几何模型,对侧边接触区工件等效直径、几何与动态接触弧长、单颗磨粒切削深度、平均切屑断面积等接触层参数进行数学建模与解析。结合快速点磨削加工试验研究结果,分析侧边接触层参数对快速点磨削过程的影响机理及薄层CBN点磨削砂轮的磨损特征及规律。结果表明,点磨削过程中材料的去除主要是在侧边接触区内完成,薄层CBN点磨削砂轮的最大磨损速率发生在砂轮侧边最大直径处。  相似文献   

19.
In this paper the nano-metric simulation of grinding of copper with diamond abrasive grains, using the molecular dynamics (MD) method, is considered. An MD model of nano-scale grinding, where a single diamond abrasive grain performs cutting of a copper workpiece, is presented. The Morse potential function is used to simulate the interactions between the atoms involved in the procedure. In the proposed model, the abrasive grain follows a curved path with decreasing depth of cut within the workpiece to simulate the actual material removal process. Three different initial depths of cut, namely 4 ?, 8 ? and 12 ?, are tested, and the influence of the depth of cut on chip formation, cutting forces and workpiece temperatures are thoroughly investigated. The simulation results indicate that with the increase of the initial depth of cut, average cutting forces also increase and therefore the temperatures on the machined surface and within the workpiece increase as well. Furthermore, the effects of the different values of the simulation variables on the chip formation mechanism are studied and discussed. With the appropriate modifications, the proposed model can be used for the simulation of various nano-machining processes and operations, in which continuum mechanics cannot be applied or experimental techniques are subjected to limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号