首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
可膨胀石墨在硬质聚氨酯泡沫阻燃性能中的研究   总被引:13,自引:1,他引:13  
胡兴胜  郝建薇 《塑料》2004,33(1):45-47
对近年出现的一种新型膨胀阻燃剂———可膨胀石墨(EG)在硬质聚氨酯泡沫塑料(RPUF)中的阻燃性能与其它几种无卤阻燃剂作了比较。用氧指数(LOI)法研究了EG与聚磷酸铵(APP)、磷酸三乙酯(TEP)、三聚氰胺(MA)、三聚氰胺氰脲酸盐(MC)等无卤阻燃剂在RPUF中的协同阻燃作用。结果表明,EG阻燃RPUF的效果最好;并且EG与这些无卤阻燃剂之间存在着协同或反协同作用,其中EG与两种含磷阻燃剂APP和TEP的协同效果最好。  相似文献   

2.
采用聚醚多元醇、多异氰酸酯、泡沫稳定剂、液态阻燃剂、催化剂和水制备了全水发泡阻燃硬质聚氨酯泡沫塑料,研究了水用量、催化剂、泡沫稳定剂及阻燃剂对聚氨酯硬泡性能的影响。结果表明,水用量影响聚氨酯硬泡的泡沫密度、压缩强度、尺寸稳定性、吸水率等性能;不同催化剂复配影响聚氨酯硬泡的泡孔结构;泡沫稳定剂影响泡孔均匀性和聚氨酯硬泡的导热性能;磷酸三乙酯(TEP)对硬泡阻燃性能的影响优于磷酸三氯丙酯(TCPP)和阻燃聚醚多元醇(F-7190)。随TEP用量的增加,聚氨酯硬泡的氧指数增大,压缩强度降低;随F-7190用量增加,聚氨酯硬泡的氧指数略有增大,压缩强度先增大后变小。  相似文献   

3.
采用可膨胀石墨(EG)分别与三种不同类型的阻燃剂磷酸三乙酯(TEP)、三-(β-氯乙基)磷酸酯(TCEP)和氢氧化铝(ATH)进行复配,得到三种复合阻燃剂,并制备出具有高阻燃性能的硬质聚氨酯(PU)泡沫材料。通过极限氧指数(LOI)测试,对比了三种复合阻燃剂的阻燃效果,探讨了EG分别与三种阻燃剂的协同阻燃作用。结果表明:EG与三种阻燃剂之间均具有协同阻燃作用,但其存在一定差异,EG和ATH、TEP联用时可以得到较好的阻燃效果。  相似文献   

4.
通过可再生的蓖麻油与甘油进行酯交换反应制备蓖麻油多元醇,并将其应用于聚氨酯阻燃硬泡(RPUF)的制备中,讨论了阻燃型可膨胀石墨(EG)的加入量、复配阻燃剂及复配阻燃剂EG/DMMP中EG与甲基膦酸二甲酯(DMMP)的配比对RPUF综合性能的影响。  相似文献   

5.
硬质聚氨酯泡沫(PUR)具有优异的保温性能、防水性能以及化学稳定性,但由于其潜在的火灾危险性,严重影响了它的使用范围。通过添加阻燃剂改善PUR的阻燃性能得到了广泛的关注,但单一的阻燃剂对阻燃性能的提升较小。以密胺树脂和氢氧化铝分别作为包覆材料对聚磷酸铵(APP)进行包覆,得到三聚氰胺甲醛树脂微胶囊化APP(MF-APP)和氢氧化铝微胶囊化APP(ATH-APP)。分别以MF-APP、ATH-APP以及未经包覆的APP作为白料,以多异氰酸酯为黑料,采用一步法制得全水发泡阻燃聚氨酯硬泡(RPUF)。研究APP、MF-APP、ATH-APP的表面形态及三种阻燃剂对聚氨酯硬泡阻燃性、热稳定性的影响,并将结果进行对比。研究表明,添加的阻燃剂质量分数为25%时,聚氨酯硬泡的极限氧指数达到最大值,添加MF-APP的RPUF极限氧指数最大为26.3%,最终成炭量约为12%,相较于ATH-APP与APP的成炭量有所提高。实验证明三聚氰胺甲醛树脂包覆聚磷酸铵能有效提高阻燃聚氨酯硬泡的阻燃性能和成炭量,提高了阻燃聚氨酯硬泡的热稳定性。  相似文献   

6.
以三聚氰胺改性腰果酚基阻燃多元醇和异氰酸酯为主要原料,采用环戊烷为发泡剂,添加无卤阻燃膨胀型阻燃剂石墨(EG)、匀泡剂等制备无卤阻燃生物基硬质聚氨酯泡沫塑料。探讨结构阻燃型聚醚多元醇、阻燃剂的添加对生物基硬质聚氨酯泡沫的热性能、燃烧性能和力学性能的影响。结果表明,随着阻燃剂的增加,导热系数和固化时间增加;添加相同阻燃剂的泡沫样品其阻燃性能随着添加量的增加而增加,EG在提高氧指数方面优于聚磷酸铵(APP)和乙基膦酸二乙酯(DEEP),固体阻燃剂APP和EG在增加力学性能、热稳定性方面较液体阻燃剂DEEP效果好。  相似文献   

7.
选用可膨胀石墨(EG)作为阻燃剂制备了阻燃聚氨酯泡沫塑料,考察了EG的用量及其表面处理对材料的阻燃性能及力学性能的影响。结果表明,选择EG作为阻燃剂可以有效提高聚氨酯泡沫塑料的阻燃性能;随着EG用量的增加,材料的阻燃性能提高,当EG用量为30%时,其氧指数(LOI)可达27%,但力学性能明显下降;采用聚乙烯醇或钛酸酯101对EG进行表面处理后,材料的力学性能明显改善,且聚乙烯醇优于钛酸酯。  相似文献   

8.
将次磷酸铝(AHP)及膨胀石墨(EG)与膨胀阻燃剂(Orient IFR603)进行复配后添加到聚氨酯中制备阻燃硬质发泡聚氨酯(RPUF)材料,研究了IFR/AHP和IFR/EG阻燃发泡聚氨酯材料的阻燃性能、表观密度、力学性能及热降解行为、泡孔结构。结果表明,AHP及EG与IFR对阻燃聚氨酯泡沫材料具有一定的协效作用。IFR及IFR/AHP阻燃体系的加入会使得RPUF的压缩性能有所提升,但IFR/EG阻燃体系降低了材料的压缩性能。阻燃剂的加入改变了聚氨酯泡沫体系的热降解过程。阻燃剂的加入对聚氨酯泡沫材料的泡孔影响不大,阻燃剂的加入使RPUF材料燃烧后碳层更加的致密和均匀。  相似文献   

9.
以氢氧化铝、三聚氰胺和聚磷酸铵为阻燃剂制备了阻燃聚氨酯硬质泡沫,研究了添加氢氧化铝前后阻燃剂用量对聚氨酯(PU)硬泡的阻燃性能和力学性能的影响。结果表明,铝/磷/氮复配阻燃体系的阻燃效果优于磷/氮阻燃体系,阻燃剂总添加量达30份时,PU硬泡同时具备较好的阻燃性能和力学性能,氧指数为32,烟密度为74,平均燃烧时间为31 s,其压缩强度和拉伸强度分别为6.52 MPa和6.16 MPa。  相似文献   

10.
通过试验研究比较了可膨胀石墨(EG)、含磷阻燃聚醚多元醇(F-7190)和磷酸三乙酯(TEP)对硬质聚氨酯泡沫塑料(RPUF)氧指数和燃烧性能的影响,同时考察了这几种阻燃剂对RPUF的压缩强度、导热系数等物理性能的影响。结果表明,EG的阻燃效果最好,F-7190、TEP的添加对含EG的RPUF极限氧指数的提高有促进作用,不同膨胀倍率的EG对RPUF的阻燃效果和物理性能的影响不同。RPUF的压缩强度随F-7190含量的增加略有增加,随TEP、EG含量的增加而减小。RPUF的导热系数随F-7190、TEP和EG含量的增加而增大,但存在一定的差异,其中EG的影响最大。  相似文献   

11.
陆伟明 《聚氨酯》2006,(12):66-66
随着建筑用聚氨酯硬泡在中国的不断发展,对建筑用聚氨酯硬泡的阻燃要求也在逐步的提高,在达到B3级阻燃的基础上,越来越多的聚氨酯硬泡企业开始生产B2以及B1级阻燃的产品.而目前在全球聚氨酯硬泡所使用的工业化阻燃剂按照其构成,大致可以分为以下四类:1.氯代磷酸酯(TCEP,TCPP,TDCP)2.全磷(磷酸酯)阻燃剂(DMMP)3.反应型溴化脂肪族阻燃剂4.反应型溴化芳香族阻燃剂从阻燃效果看,反应型溴化芳香族阻燃剂适用于满足高阻燃标准的产品,美国雅保化工的SaytexRB-79正是由此而推出的,它的中文名为:四溴邻苯二甲酸酯二醇,英文名为:tetrabromoph…  相似文献   

12.
采用极限氧指数、拉伸试验机和扫描电子显微镜对可膨胀石墨(EG)和甲基膦酸二甲酯(DMMP)复配阻燃聚氨酯酰亚胺泡沫塑料(PUI)的阻燃性能、表面炭层形貌及力学性能等进行了研究。结果表明,阻燃剂添加量相同时,复配阻燃体系的极限氧指数值高于EG单独阻燃PUI,PUI/EG/DMMP体系的极限氧指数值由18.6 %提高至33.4 %;EG/DMMP的复配,减少了对泡孔结构的破坏,PUI/EG/DMMP燃烧后能生成更加连续和致密的炭层;阻燃剂添加量相同时,与EG单独阻燃PUI相比,EG/DMMP复配减少了对压缩性能的损害。  相似文献   

13.
以聚磷酸铵(APP)为主要阻燃剂,复配可膨胀石墨(EG)和膨润土作为阻燃剂和改性剂,制备了完全无机且无卤阻燃剂改性的硬质聚氨酯泡沫(RPUF)。在固定无机阻燃剂及改性剂总量的条件下,研究了膨润土和EG用量及比例对RPUF的热稳定性、阻燃性能、力学性能、泡孔结构等的影响。结果表明,随膨润土或EG含量的增大,泡沫的压缩强度先增大后减小,二者含量分别为10%和5%时压缩强度最大。EG对泡沫阻燃性能的提高有显著影响,但同时也会使泡孔孔径增大;而膨润土作为泡沫成核剂能明显减小孔径。通过热重分析表明膨润土和EG的加入能明显增强泡沫的热稳定性。当APP为泡沫总质量的15%,膨润土为5%,EG为5%时,可以制得阻燃性能、力学性能和泡沫孔径较佳平衡的阻燃泡沫材料。在该条件下,泡沫的压缩强度为0.42 MPa,泡沫平均孔径为434μm,LOI值达到29%。  相似文献   

14.
以苯胺、苯甲醛、9,10二氢9氧杂10磷杂菲10氧化物(DOPO)为原料合成了一种新型阻燃剂9,10二氢9氧杂10磷杂菲10氧化物4\[(苯胺)甲基\]苯(DOPO FR),并与磷酸三乙酯(TEP)、膨胀石墨(EG)复配制备了阻燃聚氨酯泡沫材料。采用红外光谱分析仪、核磁共振分析仪对DOPO FR的化学结构进行表征,并利用极限氧指数、热重分析仪等对阻燃聚氨酯泡沫材料进行性能分析。结果表明,DOPO FR质量为多元醇的20 %,聚氨酯泡沫材料的极限氧指数就可达24.7 %;DOPO FR的加入提高了聚氨酯泡沫的力学性能和热稳定性;EG、TEP、DOPO FR三者协同阻燃可使聚氨酯泡沫的极限氧指数达到32 %。  相似文献   

15.
研究了膨胀石墨(EG)在阻燃软泡聚氨酯铺地材料中的应用,考察了不同种类EG的热降解历程,比较了不同种类EG及用量对阻燃软泡聚氨酯力学性能、燃烧性能的影响。结果表明,具有大膨胀倍率、高成炭性、高热释放量的EG所制备的软泡聚氨酯材料的阻燃性能较好;随着EG用量的增加,软泡聚氨酯材料的阻燃性能提升,但力学性能下降明显。通过临界热通量测试,给出了EG不同测试阶段的阻燃机理,为后续铺地材料设计提供理论基础。  相似文献   

16.
通过箱式发泡法制备了含有添加型阻燃剂甲基膦酸二甲酯与反应型阻燃剂聚磷酸酯多元醇OP550的聚氨酯硬泡(RPUF)。利用热重分析仪、氧指数仪、锥形量热仪研究了体系中阻燃剂质量分数均为10%的情况下,两种不同类型阻燃剂的添加比例对聚氨酯硬泡热性能与阻燃性能的影响。结果表明,同时添加两种阻燃剂可提高聚氨酯硬泡在高温下的残炭率,当甲基膦酸二甲酯O∶P550=4 1∶(质量比)时,体系的氧指数可达24.4%,且热释放速率的峰值达到最低值144.51 kW/m2。此外,对两种阻燃剂的阻燃机理进行了初步的探讨。  相似文献   

17.
以1,1,1,3,3-五氟丙烷(HFC-245fa)为发泡剂,添加阻燃聚醚多元醇、阻燃聚酯多元醇或阻燃剂,制备了多种阻燃硬质聚氨酯泡沫塑料。对比研究了喷涂用HFC-245fa型聚氨酯硬泡的导热系数、尺寸稳定性、压缩强度和阻燃性能。结果表明,与未经改性聚氨酯硬泡相比,阻燃聚氨酯硬泡保持了优异的尺寸稳定性,并具有更低的导热系数和更优的阻燃性能。  相似文献   

18.
采用高压发泡机制备了一系列以磷酸三(2?氯丙基)酯(TCPP)为阻燃剂的聚氨酯硬泡,讨论了TCPP用量对聚氨酯硬泡阻燃性能、压缩强度、导热系数及热水器能耗的影响.结果表明:加入TCPP的聚氨酯硬泡强度和高温下尺寸稳定性较未加入TCPP的泡沫差;随着TCPP用量的增加,硬泡导热系数上升,热水器能耗变大.当TCPP达到30...  相似文献   

19.
反应型磷氮阻燃剂/可膨胀石墨复配阻燃聚氨酯泡沫   总被引:1,自引:0,他引:1       下载免费PDF全文
杨荣  乔红  胡文田  许亮  宋艳  李锦春 《化工学报》2016,67(5):2169-2175
将反应型阻燃剂六(4-磷酸二乙酯羟甲基苯氧基)环三磷腈(HPHPCP)和可膨胀石墨(EG)复配,制备了阻燃聚氨酯泡沫,详细研究了复配阻燃剂对聚氨酯泡沫的物理力学性能、热稳定性以及阻燃性能的影响。结果表明,阻燃聚氨酯泡沫的密度和热导率随着复配阻燃剂中EG含量的增加而升高;压缩强度随着EG含量的增加呈现先增加后降低的趋势。热失重表明复配阻燃剂大大提高了聚氨酯泡沫的热稳定性。聚氨酯泡沫的初始分解温度(T10%)从212.9℃,分别提高到222.0、231.2和243.2℃;700℃残炭量从7.6%分别提高到26.3%、31.6%和37.9%。聚氨酯泡沫的阻燃性能随着复配阻燃剂中EG含量的增加而提高。阻燃聚氨酯泡沫的极限氧指数从19%提高到29%,均能通过UL-94水平燃烧HF-1等级和垂直燃烧V-0等级。  相似文献   

20.
将反应型阻燃剂六(4-磷酸二乙酯羟甲基苯氧基)环三磷腈(HPHPCP)和可膨胀石墨(EG)复配,制备了阻燃聚氨酯泡沫,详细研究了复配阻燃剂对聚氨酯泡沫的物理力学性能、热稳定性以及阻燃性能的影响。结果表明,阻燃聚氨酯泡沫的密度和热导率随着复配阻燃剂中EG含量的增加而升高;压缩强度随着EG含量的增加呈现先增加后降低的趋势。热失重表明复配阻燃剂大大提高了聚氨酯泡沫的热稳定性。聚氨酯泡沫的初始分解温度(T10%)从212.9℃,分别提高到222.0、231.2和243.2℃;700℃残炭量从7.6%分别提高到26.3%、31.6%和37.9%。聚氨酯泡沫的阻燃性能随着复配阻燃剂中EG含量的增加而提高。阻燃聚氨酯泡沫的极限氧指数从19%提高到29%,均能通过UL-94水平燃烧HF-1等级和垂直燃烧V-0等级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号