首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functional organization of rat tyrosine hydroxylase was investigated by deletion mutagenesis of the regulatory and catalytic domains. A series of tyrosine hydroxylase cDNA deletion mutants were amplified by PCR, cloned into the pET3C prokaryotic expression vector, and the mutant proteins were partially purified from E. coli. The results show that the deletion of up to 157 N-terminal amino acids activated the enzyme, but further deletion to position 184 completely destroyed catalytic activity. On the carboxyl end, the removal of 43 amino acids decreased but did not eliminate activity, suggesting that this region may play a different role in the regulation of the enzyme. These findings place the amino end of the catalytic domain between residues 158 and 184 and the carboxyl end at or prior to position 455. Deletions within the first 157 amino acids in the N-terminus caused an increase in hydroxylating activity, a decrease in the apparent Km for tyrosine and phenylalanine substrates, and a substantial increase in the Ki for dopamine inhibition. The results define this region of the N-terminus as the regulatory domain of tyrosine hydroxylase, whose primary functions are to restrict the binding of amino acid substrates and to facilitate catecholamine inhibition. The results also suggest that the well-established role of the regulatory domain in restricting cofactor binding may be secondary to an increase in catecholamine binding, which in turn lowers the affinity for the cofactor. These findings provide new insight into the functional organization and mechanisms of regulation of tyrosine hydroxylase.  相似文献   

2.
TyrOH is a non-heme iron enzyme which uses molecular oxygen to hydroxylate tyrosine to form L-dihydroxyphenylalanine (L-DOPA), and tetrahydrobiopterin to form 4a-hydroxybiopterin, in the rate-limiting step of the catecholamine biosynthetic pathway. The 2.3 A crystal structure of the catalytic and tetramerization domains of rat tyrosine hydroxylase (TyrOH) in the presence of the cofactor analogue 7,8-dihydrobiopterin and iron shows the mode of pterin binding and the proximity of its hydroxylated 4a carbon to the required iron. The pterin binds on one face of the large active-site cleft, forming an aromatic pi-stacking interaction with Phe300. This phenylalanine residue of TyrOH is found to be hydroxylated in the meta position, most likely through an autocatalytic process, and to consequently form a hydrogen bond to the main-chain carbonyl of Gln310 which anchors Phe300 in the active site. The bound pterin forms hydrogen bonds from N-8 to the main-chain carbonyl of Leu295, from O-4 to Tyr371 and Glu376, from the C-1' OH to the main-chain amides of Leu294 and Leu295, and from the C-2' hydroxyl to an iron-coordinating water. The part of the pterin closest to the iron is the O-4 carbonyl oxygen at a distance of 3.6 A. The iron is 5.6 A from the pterin 4a carbon which is hydroxylated in the enzymatic reaction. No structural changes are observed between the pterin bound and the nonliganded enzyme. On the basis of these structures, molecular oxygen could bind in a bridging position optimally between the pterin C-4a and iron atom prior to substrate hydroxylation. This structure represents the first report of close interactions between pterin and iron in an enzyme active site.  相似文献   

3.
Tyrosine hydroxylase (TyrOH) catalyzes the conversion of tyrosine to L-DOPA, the rate-limiting step in the biosynthesis of the catecholamines dopamine, adrenaline, and noradrenaline. TyrOH is highly homologous in terms of both protein sequence and catalytic mechanism to phenylalanine hydroxylase (PheOH) and tryptophan hydroxylase (TrpOH). The crystal structure of the catalytic and tetramerization domains of TyrOH reveals a novel alpha-helical basket holding the catalytic iron and a 40 A long anti-parallel coiled coil which forms the core of the tetramer. The catalytic iron is located 10 A below the enzyme surface in a 17 A deep active site pocket and is coordinated by the conserved residues His 331, His 336 and Glu 376. The structure provides a rationale for the effect of point mutations in TyrOH that cause L-DOPA responsive parkinsonism and Segawa's syndrome. The location of 112 different point mutations in PheOH that lead to phenylketonuria (PKU) are predicted based on the TyrOH structure.  相似文献   

4.
The Gram-positive bacterium Leuconostoc mesenteroides, ATCC 8293, is intrinsically resistant to the antibiotic vancomycin. This phenotype correlates with substitution of D-Ala-D-lactate (D-Ala-D-Lac) termini for D-Ala-D-Ala termini in peptidoglycan intermediates in which the depsipeptide has much lower affinity than the dipeptide for vancomycin binding. Overproduction of the L. mesenteroides D-Ala-D-Ala ligase (LmDdl) 2 in E. coli and its purification to approximately 90% homogeneity allow demonstration that the LmDdl2 does have both depsipeptide and dipeptide ligase activity. Recently, we reported that mutation of an active site tyrosine (Tyr), Tyr216, to phenylalanine (Phe) in the E. coli DdlB leads to gain of D-Ala-D-Lac depsipeptide ligase activity in that enzyme. The vancomycin-resistant LmDdl2 has a Phe at the equivalent site, Phe261. To test the prediction that a Tyr residue predicts dipeptide ligase while an Phe residue predicts both depsipeptide and dipeptide ligase activity, the F261Y mutant protein of LmDdl2 was constructed and purified to approximately 90% purity. F216Y LmDdl2 showed complete loss of the ability to couple D-Lac but retained D-Ala-D-Ala dipeptide ligase activity. The Tyr-->Phe substitution on the active site omega-loop in D-Ala-D-Ala ligases is thus a molecular indicator of both the ability to make D-Ala-D-Lac and intrinsic resistance to the vancomycin class of glycopeptide antibiotics.  相似文献   

5.
Phenylalanine hydroxylase (PheOH) catalyzes the conversion of L-phenylalanine to L-tyrosine, the rate-limiting step in the oxidative degradation of phenylalanine. Mutations in the human PheOH gene cause phenylketonuria, a common autosomal recessive metabolic disorder that in untreated patients often results in varying degrees of mental retardation. We have determined the crystal structure of human PheOH (residues 118-452). The enzyme crystallizes as a tetramer with each monomer consisting of a catalytic and a tetramerization domain. The tetramerization domain is characterized by the presence of a domain swapping arm that interacts with the other monomers forming an antiparallel coiled-coil. The structure is the first report of a tetrameric PheOH and displays an overall architecture similar to that of the functionally related tyrosine hydroxylase. In contrast to the tyrosine hydroxylase tetramer structure, a very pronounced asymmetry is observed in the phenylalanine hydroxylase, caused by the occurrence of two alternate conformations in the hinge region that leads to the coiled-coil helix. Examination of the mutations causing PKU shows that some of the most frequent mutations are located at the interface of the catalytic and tetramerization domains. Their effects on the structural and cellular stability of the enzyme are discussed.  相似文献   

6.
Prior studies have demonstrated that a juxtamembrane tyrosine (tyrosine 972) in the insulin receptor is required for the receptor to elicit various biological responses and to stimulate the tyrosine phosphorylation of two endogenous substrates, the insulin receptor substrate-1 and the adaptor protein called Shc. In the present studies the role of this tyrosine was examined in the insulin-stimulated tyrosine phosphorylation of a group of 60-kDa endogenous proteins. These include a 60-kDa protein which, when phosphorylated, becomes associated with the GTPase activating protein of Ras, a distinct 60-kDa protein that associates with either the phosphatidylinositol 3-kinase or the tyrosine phosphatase Syp, as well as a 58/53-kDa protein that is tyrosine phosphorylated in response to insulin but has no known associated protein. In each case, a mutant insulin receptor in which tyrosine 972 has been changed to phenylalanine was found to be defective in its ability to phosphorylate these three endogenous substrates, although the mutant receptor exhibited the same level of insulin-stimulated autophosphorylation as the wild type receptor. These results further demonstrate the critical role that the juxtamembrane tyrosine 972 plays in downstream signaling by the insulin receptor.  相似文献   

7.
Protein tyrosine phosphatases regulate diverse cellular processes and represent important targets for therapeutic intervention in a number of diseases. The crystal structures of protein tyrosine phosphatase 1B (PTP1B) in complex with small molecule inhibitors based upon two classes of phosphotyrosine mimetics, the (difluoronaphthylmethyl)phosphonic acids and the fluoromalonyl tyrosines, have been determined to resolutions greater than 2.3 A. The fluoromalonyl tyrosine residue was incorporated within a cyclic hexapeptide modeled on an autophosphorylation site of the epidermal growth factor receptor. The structure of this inhibitor bound to PTP1B represents the first crystal structure of a non-phosphonate-containing inhibitor and reveals the mechanism of phosphotyrosine mimicry by the fluoromalonyl tyrosine residue and the nature of its interactions within the catalytic site of PTP1B. In contrast to complexes of PTP1B with phosphotyrosine-containing peptides, binding of the fluoromalonyl tyrosine residue to the catalytic site of PTP1B is not accompanied by closure of the catalytic site WPD loop. Structures of PTP1B in complex with the (difluoronaphthylmethyl)phosphonic acid derivatives reveal that substitutions of the naphthalene ring modulate the mode of inhibitor binding to the catalytic site and provide the potential for enhanced inhibitor affinity and the generation of PTP-specific inhibitors. These results provide a framework for the rational design of higher affinity and more specific phosphotyrosine mimetic inhibitors of not only protein tyrosine phosphatases but also SH2 and PTB domains.  相似文献   

8.
Phenylalanine at residue 8 in the Aalpha chain of fibrinogen is a highly conserved amino acid that is believed to be critical for binding and catalysis by the serine protease thrombin. We have examined the requirement for Phe at this position by constructing a variant recombinant fibrinogen with a conservative substitution of tyrosine for phenylalanine, Aalpha F8Y fibrinogen. We found that the variant fibrinopeptide A (F8Y 1-16) was cleaved by thrombin, in contrast to the lack of cleavage of an Aalpha 1-23 peptide and an Aalpha 1-50 fusion protein with the same substitution. This result indicates that fibrinogen residues other than Aalpha 1-50 participate in thrombin binding and fibrinogen proteolysis. We found, for the first time, that thrombin-catalyzed lysis of the fibrinogen Bbeta chain preceded lysis of the Aalpha chain, such that fibrinopeptide B (FpB) was released prior to F8Y 1-16. Kinetic analysis demonstrated that F8Y 1-16 was a very poor substrate for thrombin, with a specificity constant 280-fold lower than normal fibrinopeptide A. FpB was also a poor substrate, but the specificity constant for FpB was only 4-fold lower than normal. Consequently, FpB was preferentially released from Aalpha F8Y fibrinogen. This "role reversal" had a dramatic effect on polymerization, such that the rate of Aalpha F8Y fibrinogen polymerization was 13% of the rate of normal recombinant fibrinogen. These results confirm the importance of phenylalanine at Aalpha chain residue 8 for efficient thrombin-catalyzed proteolysis of fibrinogen, and further demonstrate that sequential fibrinopeptide release has an important role in normal polymerization.  相似文献   

9.
c-Abl is a non-receptor tyrosine kinase that is involved in a variety of signaling pathways. Activated forms of c-Abl are associated with some forms of human leukemia. Presently, no high resolution structure of the tyrosine kinase domain of Abl is available. We have developed a structural homology model of the catalytic domain of Abl based on the crystal structure of the insulin receptor tyrosine kinase. Using this model as a guide, we selected residues near the active site predicted to play a role in peptide/protein substrate recognition. We expressed and purified 15 mutant forms of Abl with single amino acid substitutions at these positions and tested their peptide substrate specificity. We report here the identification of seven residues involved in recognition of the P-1, P+1, and P+3 positions of bound peptide substrate. Mutations in these residues cause distinct changes in substrate specificity. The results suggest features of Abl substrate recognition that may be relevant to related tyrosine kinases.  相似文献   

10.
A severe hemolytic crisis was observed in a 34-yr-old female of English-Irish extraction following a viral illness treated with acetaminophen. Heinz bodies and heat instability were present only during a transient hemolytic event. A challenge dose of acetaminophen caused no detectable hematologic abnormality. Structural studies of the hemoglobin during hemolysis and again after complete recovery localized the abnormality to tryptic peptide beta Tp-5, and automated sequencing of I 125-labeled beta chains indicated a replacement of phenylalanine (C7) beta 41 by tyrosine. Substitution of the next residue, phenylalanine (CD1) beta 42 by serine (Hb Hammersmith), has resulted in chronic severe Heinz body hemolytic anemia. The lack of chronic anemia in the present disorder may reflect the different relationships of beta41 and beta 42 and/or the similarities in volume and hydrophobicity of tyrosine and phenylalanine. It is suggested that substitution of tyrosine for phenylalanine in Hb Mequon may disturb the critical environment around the heme group and render it susceptible to oxidative denaturation in the presence of infections and/or drugs.  相似文献   

11.
12.
Tyrosine in an hepatocyte is transported from the plasma, synthesized from phenylalanine, or released during protein turnover. Effects of phenylalanine and tyrosine on the formation and fate (partitioning) of tyrosine from the different sources were examined in primary rat hepatocyte cultures. Rates of tyrosine degradation, transport, incorporation into and release from protein, and synthesis from phenylalanine were measured as well as the intracellular dilution of labeled tyrosine and phenylalanine incorporated into protein. We found tyrosine had little effect on phenylalanine hydroxylation over a wide range of conditions, that transported tyrosine and tyrosine from phenylalanine are in different metabolic pools, and that there appears to be channeling of newly synthesized tyrosine during degradation. In addition, under some conditions, intracellular partitioning of tyrosine is determined by tyrosine concentration. Specifically, if extracellular tyrosine is low and phenylalanine is at a normal plasma level, tyrosine use in protein synthesis takes precedence over tyrosine degradation or export. It is proposed that the mechanism controlling this is kinetic, based on relative rates of tyrosyl-tRNA formation and tyrosine degradation and export. A quantitative model of tyrosine and phenylalanine in-flow and out-flow in hepatocytes is given, incorporating tyrosine synthesis, degradation, plasma membrane transport, and tyrosine and phenylalanine use and release during protein turnover.  相似文献   

13.
In the outer membrane phospholipase A (OMPLA) of Escherichia coli, Ser144 has previously been identified by chemical modification as the active site serine residue. In a specific OMPLA-negative mutant strain, the pldA gene coding for OMPLA was shown to differ from the wild-type gene by a single point mutation, resulting in the substitution of Ser152 by phenylalanine. The role in catalysis of these two serine residues in OMPLA was investigated by site-directed mutagenesis. Ser144 and Ser152 were replaced one at the time by either alanine, valine, phenylalanine, threonine, or cysteine. Ser152 was furthermore replaced by asparagine. Replacement of Ser144 by cysteine resulted in 1% residual activity, whereas the other substitutions at this position yielded virtually inactive enzymes. Substitution of Ser 152 by threonine or asparagine resulted in 40% and 2% residual activity respectively, whereas all other substitutions at this position resulted in the loss of enzymatic activity. We propose that Ser144 is the nucleophile in catalysis, and that Ser152 is involved in hydrogen bonding either to the catalytic triad or in the oxyanion hole.  相似文献   

14.
Site-directed mutagenesis was used to explore the functions of a number of acidic residues of bovine low molecular weight protein tyrosine phosphatase. Residues Asp-129, Asp-56, and Asp-92 were mutated to Ala or Asn. The mutant enzymes D56A, D56N, and D92A showed no significant changes in Vmax values, although they did exhibit significantly altered Km values. In contrast, the D129A mutant enzyme exhibited a greater than 2000-fold reduction in Vmax, using p-nitrophenyl phosphate as a substrate. The Vmax values of D129A also exhibited a leaving group dependence, an altered solvent isotope effect of VmaxH/VmaxD of 0.78, and a lack of dependence on the presence of alternative phosphate acceptor alcohols, all properties that distinguish this mutant from wild type enzyme. The differences are due to a change of the rate-limiting step of the catalytic reaction. Asp-129 is concluded to be the proton donor to the leaving group in the phosphorylation step, and its mutation to alanine results in a reduced Vmax value and a change in the rate-limiting step of the catalysis from dephosphorylation to phosphorylation. Mechanistic considerations suggest that other phosphotyrosyl phosphatases having cysteine at the active site may be expected to have a similar requirement for a proton donor.  相似文献   

15.
The prophenoloxidase activating system is a defense system, frequently reported both in protostomes and in deuterostomes. The final product of the phenoloxidase activity is melanin which is ubiquitously present throughout the metazoan kingdom. The melanin synthesis pathway starts with the amino acid [aa] phenylalanine which is converted to tyrosine by the phenylalanine hydroxylase [PAH]. We show that after allo-transplantation in the marine sponge Geodia cydonium PAH is upregulated in the grafts. Enzyme determination studies revealed that PAH activity increases by three-fold two d after transplantation and reaches its maximum after 3d (by 3.7-fold). This finding was supported by determining the steady-state level of the mRNA for PAH. Furthermore the cDNA, encoding this enzyme was isolated from G. cydonium. Its deduced aa sequence encodes a protein of 51 kDa. Alignment studies indicate that the sponge PAH shares the consensus pattern as well as one characteristic pterin-binding site with the biopterin-dependent aromatic amino acid hydroxylases. Phylogenetic analysis of sponge PAH shows that all metazoan PAH fall in one group with the sponge PAH as the oldest member. The related classes of enzymes, the tyrosine hydroxylases and the tryptophan hydroxylases are statistically significantly separated from PAH; the tyrosine hydroxylase diverged as the first class from the common ancestor, a process which was calculated to have occurred 500 million years ago. It is concluded that in the sponge model system G. cydonium allogeneic rejection involves an upregulation of PAH, an enzyme initiating the pathway to melanin synthesis.  相似文献   

16.
Bacterial Delta5-3-ketosteroid isomerase (KSI) catalyzes a stereospecific isomerization of steroid substrates at an extremely fast rate, overcoming a large disparity of pKa values between a catalytic residue and its target. The crystal structures of KSI from Pseudomonas putida and of the enzyme in complex with equilenin, an analogue of the reaction intermediate, have been determined at 1.9 and 2.5 A resolution, respectively. The structures reveal that the side chains of Tyr14 and Asp99 (a newly identified catalytic residue) form hydrogen bonds directly with the oxyanion of the bound inhibitor in a completely apolar milieu of the active site. No water molecule is found at the active site, and the access of bulk solvent is blocked by a layer of apolar residues. Asp99 is surrounded by six apolar residues, and consequently, its pKa appears to be elevated as high as 9.5 to be consistent with early studies. No interaction was found between the bound inhibitor and the residue 101 (phenylalanine in Pseudomonas testosteroni and methionine in P. putida KSI) which was suggested to contribute significantly to the rate enhancement based on mutational analysis. This observation excludes the residue 101 as a potential catalytic residue and requires that the rate enhancement should be explained solely by Tyr14 and Asp99. Kinetic analyses of Y14F and D99L mutant enzymes demonstrate that Tyr14 contributes much more significantly to the rate enhancement than Asp99. Previous studies and the structural analysis strongly suggest that the low-barrier hydrogen bond of Tyr14 (>7.1 kcal/mol), along with a moderate strength hydrogen bond of Asp99 ( approximately 4 kcal/mol), accounts for the required energy of 11 kcal/mol for the transition-state stabilization.  相似文献   

17.
18.
In humans, the FLT4 gene encodes two isoforms of a tyrosine kinase receptor, which differ in their carboxy terminal regions. As compared to the short form, the long form has an additional stretch of 65 amino acids containing three tyrosine residues (Y1333, Y1337 and Y1363). Once expressed in fibroblast cells, only the long form is able to elicit both anchorage-independent growth in a soft agar assay and tumors in nude mice, and thus appears endowed with a potential ligand-dependent transforming capacity. Replacement of tyrosine 1337 by phenylalanine abrogates the transforming capacity of the long form. This residue was identified as a potential autophosphorylation site, and a docking site for a substrate important in the signal transduction specific of the long FLT4 isoform. We demonstrate that the GRB2 and SHC cytoplasmic substrates are involved in FLT4 signal transduction. SHC interaction could be crucial to FLT4-mediated transforming activity associated with the long isoform. Finally, trancripts for the two forms are detected in tissues positive for FLT4 gene expression.  相似文献   

19.
The poliovirus RNA-dependent RNA polymerase (3Dpol) shares a region of homology with all RNA polymerases, centered around the amino acid motif YGDD, which has been postulated to be involved in the catalytic activity of the enzyme. Using oligonucleotide site-directed mutagenesis, we substituted the tyrosine at this motif of the poliovirus RNA-dependent RNA polymerase with cysteine, histidine, isoleucine, methionine, phenylalanine, or serine. The enzymes were expressed in Escherichia coli, and in vitro enzyme activity was tested. The phenylalanine and methionine substitutions resulted in enzymes with activity equal to that of the wild-type enzyme. The cysteine substitution resulted in an enzyme with approximately 50% of the wild-type activity, while the serine substitution resulted in an enzyme with approximately 10% of the wild-type activity; the isoleucine and histidine substitutions resulted in background levels of enzyme activity. To assess the effects of the mutants in viral replication, the mutant polymerase genes were subcloned into the infectious cDNA clone of poliovirus. Transfection of poliovirus cDNA containing the phenylalanine mutation in 3Dpol gave rise to virus in all of the transfection trials, while cDNA containing the methionine mutation resulted in virus in only 3 of 40 transfections. Transfection of cDNAs containing the other substitutions at the tyrosine residue did not result in infectious virus. The recovered viruses demonstrated kinetics of replication similar to those of the wild-type virus, as measured by [3H]uridine incorporation at either 37 or 39 degrees C. RNA sequence analysis of the 3Dpol gene of both viruses demonstrated that the tyrosine-to-phenylalanine or tyrosine-to-methionine mutation was still present. No other differences in the 3Dpol gene between the wild-type and phenylalanine-containing virus were found. The virus containing the methionine mutation also contained two other nucleotide changes from the wild-type 3Dpol sequence; one resulted in a glutamic acid-to-aspartic acid change at amino acid 108 of the polymerase, and the other resulted in a C-to-T base change at nucleotide 6724, which did not result in an amino acid change. To confirm that the second amino acid mutation found in the 3Dpol gene of the methionine-substituted virus allowed for replication ability, a mutation corresponding to the glutamic acid-to-aspartic acid change was made in the polymerase containing the methionine substitution, and this double-mutant polymerase was expressed in E. coli. The double-mutant enzyme was as active as the wild-type enzyme under in vitro assay conditions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
A total of 10 restriction site polymorphisms have been identified at the human phenylalanine hydroxylase locus using a full-length human phenylalanine hydroxylase cDNA clone as a hybridization probe to analyze human genomic DNA. These polymorphic patterns segregate in a Mendelian fashion and concordantly with the disease state in various PKU kindreds. The frequencies of the restriction site polymorphisms at the human phenylalanine hydroxylase locus among Caucasians are such that the observed heterozygosity in the population is 87.5%. Thus, most families with a history of classical phenylketonuria can take advantage of the genetic analysis for prenatal diagnosis and carrier detection of the hereditary disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号