首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
最小覆盖算法及正确性证明   总被引:2,自引:0,他引:2  
本文中的最小覆盖问题是指用一个圆覆盖平面上的若干个点。本文给出了求近似最小覆盖圆的最大距离算法。估计了它与最小覆盖圆的误差上界为1/2(4-2 3~(1/2)m)~(1/2)(m表示最大距离),并运用谓词归约方法证明了算法的正确性。  相似文献   

2.
带有度约束的最小耗费生成树的分支限界算法   总被引:14,自引:0,他引:14  
最小耗费生成树算法已很成熟,如Dijkstra's 算法,Prim’s 算法等。但在实际应用中我们常会碰到一类问题,对最小耗费生成树中每个结点的度数有所限制。这便是带有度约束bi(i=1,2,…,n)的最小耗费生成树(DCMCST)问题,在管道系统、通信、计算机网络中均会遇到这样的问题。本文提出一种分枝界限算法来产生DCMCST。  相似文献   

3.
基于Prim算法和Kruskal算法的最小生成树优化研究   总被引:1,自引:0,他引:1  
文章从目前最常见的两种在图最小生成树算法,即Prim和Kruskal算法,展开了阐述和分析,运用了大量的数据和实例对这两种计算方法进行了分析和研究。通过试验并对Prim算法进行改进,从图中每个顶点的度数入手,采取删除某些无用边的思想方法,给出了一个寻找最小生成树的算法,使其能动态调整自身的性能,既适合于稠密图,又适合于稀疏图。  相似文献   

4.
针对赋权有向图最小生成树问题存在可行解的情况,根据树节点入度最大值为1的性质,提出赋权有向图最小生成树性质。采用反证法,调整生成树根节点到弧头的路径来证明赋权有向图MST性质的正确性。基于赋权有向图MST性质,给出改进的Prim和Kruskal算法及其时间复杂度分析。实验给出构造某赋权有向图实例最小生成树的具体步骤,表明这2种算法能正确有效地构造赋权有向图最小生成树。  相似文献   

5.
最小生成树的算法   总被引:1,自引:0,他引:1  
徐绪松  李万学 《计算机学报》1993,16(11):873-876
本文提出了一个利用集合运算生成最小生成树的算法。研究了实现集合运算的数据结构及施加在这个结构上的算法。该算法利用公式分组排序。利用路径压缩的方法进行查找,并运算。该算法将有N个顶点E条边的无向连通网络生成最小生成树的期望时间是O。  相似文献   

6.
最小生成树是数据结构中图的一种重要应用,对于具有n个顶点的带权连通图可以建立许多不同的生成树.Kruskal算法和Prim算法是求最小生成树的常用算法.本文讨论了一种新的算法.  相似文献   

7.
针对梯形模糊数,定义了一种梯形模糊结构元.研究了边权值为梯形模糊数的模糊权值网络,建立了其最小生成树问题的数学模型,并利用梯形模糊结构元加权排序思想和Kruskal算法,设计了一种该问题的求解算法,给出了算法的复杂度分析和应用实例.文中的模型和算法对于边权值为其他类型模糊数的模糊权值网络同样有效.  相似文献   

8.
求解最小生成树问题被广泛应用于求解现实中的搜索相关问题。然而现实瞬息万变,一个连通网络的节点常常发生变动。而一旦发生改变,传统算法必须要再次计算最小生成树。但是虽然节点发生了变动,最小生成树未必全部发生改变,这就造成了不必要的浪费。鉴于此提出一种基于Kruskal算法和Prim算法的最小树更新策略,对Kruskal算法和Prim算法做了改进,使其不必重新计算也能在连通图发生改变时更新最小生成树。  相似文献   

9.
最小连接问题在网络优化中有广泛的应用,找到快速有效的算法来构造最小生成树是解决问题的关键。该文提出了一种构造算法,在存储结构和排序方法两方面进行了改进。从理论上分析了算法的计算复杂度,并实际测试了算法运行时间。结果表明该算法较现有算法有了很大提高。  相似文献   

10.
对图论中赋权无向图中最小生成树问题的数学模型,分析了建立的过程,并证明了各边不构成圈的一个等价条件,最后推广到有向图中,为用数学软件求解图论问题打下基础。  相似文献   

11.
最小比率生成树是找出目标函数形式为两个线性函数比值最小的生成树,例如总代价与总收益比值最小的生成树。当不限制分母的符号时,这是一个NP-hard问题。在分析最小比率生成树数学性质的基础上,提出了最小比率生成树的竞争决策算法。为了防止算法陷入局部最优,采用edge_exchange操作来增加算法的搜索范围。为了验证算法的有效性,采用无关和相关两种策略产生测试数据,并使用Delphi 7.0实现了算法的具体步骤。  相似文献   

12.
13.
This paper studies the problem of constructing a minimum-weight spanning tree (MST) in a distributed network. This is one of the most important problems in the area of distributed computing. There is a long line of gradually improving protocols for this problem, and the state of the art today is a protocol with running time due to Kutten and Peleg [S. Kutten, D. Peleg, Fast distributed construction of k-dominating sets and applications, J. Algorithms 28 (1998) 40-66; preliminary version appeared in: Proc. of 14th ACM Symp. on Principles of Distributed Computing, Ottawa, Canada, August 1995, pp. 20-27], where Λ(G) denotes the diameter of the graph G. Peleg and Rubinovich [D. Peleg, V. Rubinovich, A near-tight lower bound on the time complexity of distributed MST construction, in: Proc. 40th IEEE Symp. on Foundations of Computer Science, 1999, pp. 253-261] have shown that time is required for constructing MST even on graphs of small diameter, and claimed that their result “establishes the asymptotic near-optimality” of the protocol of [S. Kutten, D. Peleg, Fast distributed construction of k-dominating sets and applications, J. Algorithms 28 (1998) 40-66; preliminary version appeared in: Proc. of 14th ACM Symp. on Principles of Distributed Computing, Ottawa, Canada, August 1995, pp. 20-27].In this paper we refine this claim, and devise a protocol that constructs the MST in rounds, where μ(G,ω) is the MST-radius of the graph. The ratio between the diameter and the MST-radius may be as large as Θ(n), and, consequently, on some inputs our protocol is faster than the protocol of [S. Kutten, D. Peleg, Fast distributed construction of k-dominating sets and applications, J. Algorithms 28 (1998) 40-66; preliminary version appeared in: Proc. of 14th ACM Symp. on Principles of Distributed Computing, Ottawa, Canada, August 1995, pp. 20-27] by a factor of . Also, on every input, the running time of our protocol is never greater than twice the running time of the protocol of [S. Kutten, D. Peleg, Fast distributed construction of k-dominating sets and applications, J. Algorithms 28 (1998) 40-66; preliminary version appeared in: Proc. of 14th ACM Symp. on Principles of Distributed Computing, Ottawa, Canada, August 1995, pp. 20-27].As part of our protocol for constructing an MST, we develop a protocol for constructing neighborhood covers with a drastically improved running time. The latter result may be of independent interest.  相似文献   

14.
针对度约束最小生成树问题,提出了一种新的快速算法。新的快速算法分为两个主要部分,第一部分从一棵最小生成树出发,构造一棵度约束树。第二部分设计了一种改进策略,从第一部分求得的度约束树出发,每次去掉树的一条边,将顶点按照连通性划分成两个集合,在不违反度约束的情况下,从这两个集合构成的边割中,选择一条权值减少最大的边添加到图中。通过大量的数值实验表明新的快速算法性能良好。  相似文献   

15.
针对网络设计和组合优化中的度约束最小生成树问题,基于第k最小生成树的求解算法,提出了一种求解网络G关于指定节点的最小k度生成树的新算法。该算法通过对网络G的最小生成树作最优可行变换,逐步构造出指定节点的度数越来越接近度约束k的最小i度生成树,最终得到了网络G关于指定节点的最小k度生成树。给出了算法实施的具体步骤,并证明了算法的正确性。最后通过仿真结果和一个运输实例,表明了该算法在解决度约束最小生成树问题中的有效性。  相似文献   

16.
V. King 《Algorithmica》1997,18(2):263-270
The problem considered here is that of determining whether a given spanning tree is a minimal spanning tree. In 1984 Komlós presented an algorithm which required only a linear number of comparisons, but nonlinear overhead to determine which comparisons to make. We simplify his algorithm and give a linear-time procedure for its implementation in the unit cost RAM model. The procedure uses table lookup of a few simple functions, which we precompute in time linear in the size of the tree.  相似文献   

17.
求解多目标最小生成树的改进多目标蚁群算法   总被引:1,自引:0,他引:1  
多目标最小生成树问题是典型的NP问题。针对此问题,提出一种改进的多目标蚁群算法。为获得更好的非劣前端,通过合理选取多个信息素扩散源与扩散策略来避免其早熟收敛,并引入非支配排序算子,提高种群多样性并避免算法过早陷入局部最优解。对比实验结果表明:对于多目标最小生成树问题,该算法是有效的,不但在求解效率和解的质量方面优于相关算法,而且随着问题规模的扩大,算法仍保持较好的性能。  相似文献   

18.
The capacitated minimum spanning tree (CMST) is a notoriously difficult problem in combinatorial optimization. Extensive investigation has been devoted to developing efficient algorithms to find optimal or near-optimal solutions. This paper proposes a new CMST heuristic algorithm that effectively combines the classical node-based and tree-based neighborhoods embodied in a filter-and-fan (F&F) approach, a local search procedure that generates compound moves in a tree search fashion. The overall algorithm is guided by a multi-level oscillation strategy used to trigger each type of neighborhood while allowing the search to cross feasibility boundaries. Computational results carried out on a standard set of 135 benchmark problems show that a simple F&F design competes effectively with prior CMST metaheuristics, rivaling the best methods, which are significantly more complex.  相似文献   

19.
Uncertainty theory has shown great advantages in solving many nondeterministic problems, one of which is the degree-constrained minimum spanning tree (DCMST) problem in uncertain networks. Based on different criteria for ranking uncertain variables, three types of DCMST models are proposed here: uncertain expected value DCMST model, uncertain α-DCMST model and uncertain most chance DCMST model. In this paper, we give their uncertainty distributions and fully characterize uncertain expected value DCMST and uncertain α-DCMST in uncertain networks. We also discover an equivalence relation between the uncertain α-DCMST of an uncertain network and the DCMST of the corresponding deterministic network. Finally, a related genetic algorithm is proposed here to solve the three models, and some numerical examples are provided to illustrate its effectiveness.  相似文献   

20.
1 IntroductionLet G = (V, E) be a connected, undirected graph with a weight function W on the set Eof edges to the set of reals. A spanning tree is a subgraph T = (V, ET), ET G E, of C suchthat T is a tree. The weight W(T) of a spanning tree T is the sum of the weights of its edges.A spanning tree with the smallest possible'weight is called a minimum spanning tree (MST)of G. Computing an MST of a given weighted graph is an important problem that arisesin many applications. For this …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号