首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Basri B  Griffin MJ 《Ergonomics》2011,54(12):1214-1227
This study determined how backrest inclination and the frequency of vibration influence the perception and discomfort of vibration applied parallel to the back (vertical vibration when sitting upright, horizontal vibration when recumbent). Subjects experienced backrest vibration at frequencies in the range 2.5 to 25 Hz at vibration magnitudes up to 24 dB above threshold. Absolute thresholds, equivalent comfort contours, and the principal locations for feeling vibration were determined with four backrest inclinations: 0° (upright), 30°, 60° and 90° (recumbent). With all backrest inclinations, acceleration thresholds and equivalent comfort contours were similar and increased with increasing frequency at 6 dB per octave (i.e. velocity constant). It is concluded that backrest inclination has little effect on the frequency dependence of thresholds and equivalent comfort contours for vibration applied along the back, and that the W (d) frequency weighting in current standards is appropriate for evaluating z-axis vibration of the back at all backrest inclinations. STATEMENT OF RELEVANCE: To minimise the vibration discomfort of seated people, it is necessary to understand how discomfort varies with backrest inclination. It is concluded that the vibration on backrests can be measured using a pad between the backrest and the back, so that it reclines with the backrest, and the measured vibration evaluated without correcting for the backrest inclination.  相似文献   

2.
This study investigated the effects of reclined backrest angles on cognitive and psycho-motor tasks during exposure to vertical whole-body vibration. Twenty participants were each exposed to three test stimuli of vertical vibration: 2-8 Hz; 8-14 Hz and 14-20 Hz, plus a stationary control condition whilst seated on a vibration platform at five backrest angles: 0° (recumbent, supine) to 90° (upright). The vibration magnitude was 2.0 ms(-2) root-mean-square. The participants were seated at one of the backrest angles and exposed to each of the three vibration stimuli while performing a tracking and choice reaction time tasks; then they completed the NASA-TLX workload scales. Apart from 22.5° seat backrest angle for the tracking task, backrest angle did not adversely affect the performance during vibration. However, participants required increased effort to maintain performance during vibration relative to the stationary condition. These results suggest that undertaking tasks in an environment with vibration could increase workload and risk earlier onset of fatigue. PRACTITIONER SUMMARY: Current vibration standards provide guidance for assessing exposures for seated, standing and recumbent positions, but not for semi-recumbent postures. This paper reports new experimental data systematically investigating the effect of backrest angle on human performance. It demonstrates how workload is elevated with whole-body vibration, without getting affected by backrest angle.  相似文献   

3.
《Ergonomics》2012,55(13):1454-1474
A test facility and protocol were developed for measuring the seated, vertical, whole-body vibration response of small children of less than 18 kg in mass over the frequency range from 1 to 45 Hz. The facility and protocol adhered to the human vibration testing guidelines of BS7085 and to current codes of ethics for research involving children. Additional procedures were also developed which are not currently defined in the guidelines, including the integral involvement of the parents and steps taken to maximize child happiness. Eight children were tested at amplitudes of 0.8 and 1.2 m/s2 using band-limited, Gaussian, white noise acceleration signals defined over the frequency interval from 1 to 50 Hz. Driving point apparent mass modulus and phase curves were determined for all eight children at both test amplitudes. All results presented a single, principal, anti-resonance, and were similar to data reported for primates and for adult humans seated in an automotive posture which provided backrest support. The mean frequency of the apparent mass peak was 6.25 Hz for the small children, as compared to values between 6.5 – 8.5 Hz for small primates and values between 6.5 – 8.6 Hz for adults seated with backrest support. The peak value of the mean, normalized, apparent mass was 1.54 for the children, which compares to values from 1.19 to 1.45 reported in the literature for small primates and 1.28 for adults seated with backrest support. ISO standard 5982, which specifies a mean, normalized, apparent mass modulus peak of 1.50 at a frequency of 4.0 Hz for adults seated without backrest support, provides significant differences.  相似文献   

4.
Giacomin J 《Ergonomics》2004,47(13):1454-1474
A test facility and protocol were developed for measuring the seated, vertical, whole-body vibration response of small children of less than 18 kg in mass over the frequency range from 1 to 45 Hz. The facility and protocol adhered to the human vibration testing guidelines of BS7085 and to current codes of ethics for research involving children. Additional procedures were also developed which are not currently defined in the guidelines, including the integral involvement of the parents and steps taken to maximize child happiness. Eight children were tested at amplitudes of 0.8 and 1.2 m/s(2) using band-limited, Gaussian, white noise acceleration signals defined over the frequency interval from 1 to 50 Hz. Driving point apparent mass modulus and phase curves were determined for all eight children at both test amplitudes. All results presented a single, principal, anti-resonance, and were similar to data reported for primates and for adult humans seated in an automotive posture which provided backrest support. The mean frequency of the apparent mass peak was 6.25 Hz for the small children, as compared to values between 6.5 - 8.5 Hz for small primates and values between 6.5 - 8.6 Hz for adults seated with backrest support. The peak value of the mean, normalized, apparent mass was 1.54 for the children, which compares to values from 1.19 to 1.45 reported in the literature for small primates and 1.28 for adults seated with backrest support. ISO standard 5982, which specifies a mean, normalized, apparent mass modulus peak of 1.50 at a frequency of 4.0 Hz for adults seated without backrest support, provides significant differences.  相似文献   

5.
Maintaining correct sitting posture is highly likely by simply informing seated people of their current sitting postures. Few studies have simultaneously applied load distribution measurements and sitting posture feedback to measure bodily pressure distribution. Commercialization of sitting posture monitoring systems has been difficult due to high cost. This study tested a system that measures load on the seat pan and load transferred to the backrest using four load cells installed on the seat pan. Three body weight ratios were calculated and differences in body weight ratios were tested among six sitting postures. The results were considered highly reliable based on strong correlations among three instruments’ results despite differences in force plate and dead load between the results of the monitoring system and the load-measuring system. The findings encourage commercialization and future research that includes gender and physical characteristic differences.  相似文献   

6.
《Ergonomics》2012,55(12):1214-1227
This study determined how backrest inclination and the frequency of vibration influence the perception and discomfort of vibration applied parallel to the back (vertical vibration when sitting upright, horizontal vibration when recumbent). Subjects experienced backrest vibration at frequencies in the range 2.5 to 25 Hz at vibration magnitudes up to 24 dB above threshold. Absolute thresholds, equivalent comfort contours, and the principal locations for feeling vibration were determined with four backrest inclinations: 0° (upright), 30°, 60° and 90° (recumbent). With all backrest inclinations, acceleration thresholds and equivalent comfort contours were similar and increased with increasing frequency at 6 dB per octave (i.e. velocity constant). It is concluded that backrest inclination has little effect on the frequency dependence of thresholds and equivalent comfort contours for vibration applied along the back, and that the W d frequency weighting in current standards is appropriate for evaluating z-axis vibration of the back at all backrest inclinations.

Statement of Relevance: To minimise the vibration discomfort of seated people, it is necessary to understand how discomfort varies with backrest inclination. It is concluded that the vibration on backrests can be measured using a pad between the backrest and the back, so that it reclines with the backrest, and the measured vibration evaluated without correcting for the backrest inclination.  相似文献   

7.
Basri B  Griffin MJ 《Ergonomics》2012,55(8):909-922
This study determined how backrest inclination and the frequency and magnitude of vertical seat vibration influence vibration discomfort. Subjects experienced vertical seat vibration at frequencies in the range 2.5-25 Hz at vibration magnitudes in the range 0.016-2.0 ms(-2) r.m.s. Equivalent comfort contours were determined with five backrest conditions: no backrest, and with a stationary backrest inclined at 0° (upright), 30°, 60° and 90°. Within all conditions, the frequency of greatest sensitivity to acceleration decreased with increasing vibration magnitude. Compared to an upright backrest, around the main resonance of the body, the vibration magnitudes required to cause similar discomfort were 100% greater with 60° and 90° backrest inclinations and 50% greater with a 30° backrest inclination. It is concluded that no single frequency weighting provides an accurate prediction of the discomfort caused by vertical seat vibration at all magnitudes and with all backrest conditions. PRACTITIONER SUMMARY: Vertical seat vibration is a main cause of vibration discomfort for drivers and passengers of road vehicles. A frequency weighting has been standardised for the evaluation of vertical seat vibration when sitting upright but it was not known whether this weighting is suitable for the reclined sitting postures often adopted during travel.  相似文献   

8.
ObjectiveThis study aimed to assess the effects of backrest inclination and vibration frequency on muscle activity in a dynamic environment using a musculoskeletal model.MethodThe muscle activity modeling method was used to analyze a full body musculoskeletal system of a seated person with a public domain rigid body model in an adjustable car seat. This model was established using AnyBody Modeling System, based on the inverse dynamic approach. And the min/max criterion in dealing with the muscle redundancy problem. Ten healthy subjects were exposed to whole body vibration (WBV) with five frequencies (3, 4.5, 6, 7, and 8 Hz) in the vertical direction in a randomized order on three separate days. The displacement of the seat-pan and head was measured using a hybrid Polaris spectra system to obtain the seat-to-head (STH) transmissibility. Muscle oxygenation was measured using near-infrared spectroscopy. The validity of the model was tested using STH transmissibility and muscle oxygenation.ResultsIncreased vibration frequency caused high muscle activities of the abdomen and the right leg with a backrest forward inclination angle. The muscle activities of the left leg decreased at a backrest backward inclination except at inclination angles of 15° and 30°. Muscle activity of the lumbar suddenly increased at a backrest inclination angle of 5° and vibration frequency of 5 Hz. Muscle activities were higher under vibration than that without vibration.ConclusionVibration frequency significantly affected the muscle activity of the lumbar area. Likewise, the inclination degree of the backrest significantly affected the muscle activities of the right leg and the abdomen. The combination of vibration and forward inclination of the backrest can be used to maximize the muscle activity of the leg, similar to the abdomen and lumbar muscles.Relevance to the industryThe musculoskeletal model established in the present study provides a method that can be used to investigate the biomechanical response of seated drivers to WBV. This model helps protect drivers from occupational injury.  相似文献   

9.
National and International Standards (e.g. BS 6841 and ISO 2631-1) provide methodologies for the measurement and assessment of whole-body vibration in terms of comfort and health. The EU Physical Agents (Vibration) Directive (PAVD) provides criteria by which vibration magnitudes can be assessed. However, these standards only consider upright seated (90°) and recumbent (0°) backrest angles, and do not provide guidance for semi-recumbent postures. This article reports an experimental programme that investigated the effects of backrest angle on comfort during vertical whole-body vibration. The series of experiments showed that a relationship exists between seat backrest angle, whole-body vibration frequency and perceived levels of discomfort. The recumbent position (0°) was the most uncomfortable and the semi-recumbent positions of 67.5° and 45° were the least uncomfortable. A new set of frequency weighting curves are proposed which use the same topology as the existing BS and ISO standards. These curves could be applied to those exposed to whole-body vibration in semi-recumbent postures to augment the existing standardised methods. PRACTITIONER SUMMARY: Current vibration standards provide guidance for assessing exposures for seated, standing and recumbent positions, but not for semi-recumbent postures. This article reports new experimental data systematically investigating the effect of backrest angle on discomfort experienced. It demonstrates that most discomfort is caused in a recumbent posture and that least was caused in a semi-recumbent posture.  相似文献   

10.
Changes in spinal length were used to evaluate a new concept for an office chair. This so-called dynamic chair imparts passive forced motion to the seated subject. The passive forced motion is a rotary movement about an axis, perpendicular to the seat with amplitude of 0.6 degrees and a frequency of 0.08 Hz. Change of stature is assumed to provide a measure for spinal load. Eight subjects were measured in two situations: static (without motion) and dynamic. In both situations the same office tasks were performed and the duration of the sitting period was 1 h. To allow for the normal shrinkage curve the starting time was the same on each of the measurement days. The results indicated a significant difference: when sitting on the dynamic chair the average spinal length increased in comparison to the spinal length in the static chair, where average spinal length decreased. It was concluded that there is spinal distress relief due to the passive motion of the chair.  相似文献   

11.
Prolonged and static sitting postures provoke physical inactivity at VDU workplaces and are therefore discussed as risk factors for the musculoskeletal system. Manufacturers have designed specific dynamic office chairs featuring structural elements which promote dynamic sitting and therefore physical activity. The aim of the present study was to evaluate the effects of four specific dynamic chairs on erector spinae and trapezius EMG, postures/joint angles and physical activity intensity (PAI) compared to those of a conventional standard office chair. All chairs were fitted with sensors for measurement of the chair parameters (backrest inclination, forward and sideward seat pan inclination), and tested in the laboratory by 10 subjects performing 7 standardized office tasks and by another 12 subjects in the field during their normal office work. Muscle activation revealed no significant differences between the specific dynamic chairs and the reference chair. Analysis of postures/joint angles and PAI revealed only a few differences between the chairs, whereas the tasks performed strongly affected the measured muscle activation, postures and kinematics. The characteristic dynamic elements of each specific chair yielded significant differences in the measured chair parameters, but these characteristics did not appear to affect the sitting dynamics of the subjects performing their office tasks.  相似文献   

12.
Recent studies on train passengers’ activities found that many passengers were engaged in some form of work, e.g. reading and writing, while traveling by train. A majority of the passengers reported that they were disturbed by vibrations or motions during their journey. A laboratory study was therefore set up to study how stationary low-frequency lateral vibrations influence the difficulty to read and write. The study involved 48 subjects (24f+24m) divided into three age groups. Two levels of sinusoidal vibrations were applied at nine discrete frequencies (0.8–8.0 Hz). Subjects performed both reading and writing tasks under two sitting positions (leaning against the backrest and leaning over a table). The judgments of perceived difficulty to read and write were rated using Borg's CR-100 scale. The results showed significant differences between the tasks and postural conditions. The subjects reported greater difficulty while reading and writing on the table than while leaning back. The frequencies up to 5 Hz had a particular influence on the perceived difficulty.  相似文献   

13.
Previous research has demonstrated deficiency in blood supply to lumbar muscles in the form of decrease in oxygenation and blood volume during short duration of exposure to seated whole-body vibration (WBV). However, it is not clear if these WBV-induced lumbar muscle responses are comparable, for example, to that of an endurance exercise-induced oxygenation and blood volume responses?On a separate day, eight healthy participants performed a seated arm cranking exercise until volitional exhaustion. On three separate days, participants were exposed to 3, 4.5, and 6 Hz on a vibration simulator for a period of 16 min. During the fifth minute of WBV ‘with’ and ‘without’ backrest support, participants performed rhythmic handgrip contractions for 1 min. Oxygenation and blood volume responses from the lumbar region were measured utilizing Near-infrared spectroscopy.A percent change in oxygenation and blood volume responses during WBV was expressed as a function of spectroscopy-derived minimum (at the exhaustion) and maximum (during recovery from WBV) responses obtained from the arm cranking exercise. Highest decrease in spectroscopy-derived responses (represented in mean values) was observed: at 4.5 Hz; sitting ‘without’ backrest support; and handgrip contractions during exposure to WBV.Spectroscopy-derived hemodynamic responses obtained during the endurance exercise were significantly lower than the corresponding values measured at different WBV conditions, implying that although the spinal resonance frequency of 4.5 Hz decreases oxygen saturation considerably, progress of oxygen depletion is further evidenced during an endurance exercise.Relevance to industryEstablishing fully oxidized and reduced physiologic states for the lumbar muscle by occluding arterial blood flow is difficult. However, by utilizing an aerobic protocol until volitional exhaustion, lumbar oxygenation and blood volume responses for a variety of WBV-related exposures can be compared. It was concluded that WBV-induced lumbar hemodynamic responses fall well within the reduced and oxidized conditions established through the endurance arm cranking exercise.  相似文献   

14.
In a previous working environment study of building crane operators, it has been found that approximately 70% experienced discomfort from the locomotor system. Comments by the interviewed crane operators indicated that it is, among other things, the forward flexed sitting position during lifts close to the crane that causes discomfort. This investigation sought to apply knowledge from the forestry industry concerning the beneficial effects of improved operator's seats to the work situation of crane operators.

On a construction site with three cranes, an operator's seat with adjustable sitting angle was installed in one of the cranes. Estimation of perceived strain-discomfort in the lumbar region of the back as well as in the neck-shoulder region was assessed according to Borg's scale. Data were collected from the crane operators seated in their ordinary operator's seat, seated in the test seat, and seated in another crane with an ordinary type of seat. The results showed that in 1/3 rd of all lifts, the crane operator was sitting bent-forward with little opportunity for relief via a backrest or armrests. The highest estimated discomfort values in the study were also obtained in an ordinary operator's seat on days with a high proportion of lifts close to the crane. When working in the test seat, none of the subjects gave an estimate higher than 0·5 (discomfort equivalent to very, very weak). An adjustable operator's seat could be a good alternative to a fixed seat, and more tests would be desirable.  相似文献   


15.
The purposes of this study were to characterize the influence of seat back angle variations on the neck comfort of sleeping passengers without a pillow and provide suggestions for the design of economy-class seats. In this study, 17 subjects were subjected to a sleep experiment to test the effect of the backrest angle on head and neck rotation and the fatigue level of the neck muscles. The results showed that a reclined backrest (positioned at 110°) caused greater rotation of the head and neck and greater fatigue of the neck muscles than a vertical backrest. Additionally, the higher was the subject's head extended above the top of the backrest, the more complicated the head and neck rotation was and the more intense the stretching of muscles was. We conclude that, when sleeping in a sitting position without head support, passengers were more likely to experience neck muscle fatigue with the reclined backrest than with the vertical backrest. Passenger height was also found to be an important factor contributing to head and neck fatigue. On the basis of the experimental results, we offer suggestions for the design of backrests to improve passengers' sleeping experience. Our research and suggestions provide a new path for innovation in the design of economy-class seats and could help to improve the travel experience.  相似文献   

16.
The perception of vehicle ride comfort is influenced by the dynamic performance of full-depth foam used in many vehicle seats. The effects of the thickness of foam on the dynamic stiffness (i.e., stiffness and damping as a function of frequency) of foam cushions with three thicknesses (60, 80, and 100 mm), and the vibration transmitted through these cushions at the seat pan and the backrest were measured with 12 subjects (6 males and 6 females). With increasing thickness, the stiffness and the damping of the foam decreased. With increasing thickness of foam at the seat pan, the resonance frequencies around 4 Hz in the vertical in-line and fore-and-aft cross-axis transmissibilities of the seat pan cushion and the backrest cushion decreased. For the conditions investigated, it is concluded that the thickness of foam at a vertical backrest has little effect on the vertical in-line or fore-and-aft cross-axis transmissibilities of the foam at either the seat pan or the backrest. The frequencies of the primary resonances around 4 Hz in the vertical in-line transmissibility and the fore-and-aft cross-axis transmissibility of foam at the seat pan were highly correlated. Compared to sitting on a rigid seat pan with a foam backrest, sitting with foam at both the seat pan and the backrest reduced the resonance frequency in the vertical in-line transmissibility of the backrest foam and increased the associated transmissibility at resonance, while the fore-and-aft cross-axis transmissibility of the backrest was little affected. Compared to sitting without a backrest, sitting with a rigid vertical backrest increased the resonance frequency of the fore-and-aft cross-axis transmissibility of the seat pan cushion and increased the transmissibility at resonance.Relevance to industryThe transmissibility of a seat is determined by the dynamic properties of the occupant of the seat and the dynamic properties of the seat. This study shows how the thicknesses of foam at a seat pan and foam at a backrest affect the in-line and cross-axis transmissibilities of the foams at the seat pan and the backrest. The findings have application to the design of vehicle seats to minimise the transmission of vibration to the body.  相似文献   

17.
The biodynamic response of human body seated without a back support and exposed to vertical whole-body vibration have been standardized in ISO 5982 and DIN 45676 in terms of driving-point mechanical impedance and apparent mass. A comparison of ranges defined in two standards, however, reveal considerable differences in both the magnitude and phase. Greater differences are more evident for the three body mass groups, which suggests the lack of adequate reference values of biodynamic responses of seated human subjects of different body masses. In this experimental study, the biodynamic responses of seated humans within three different body mass ranges are characterized under different magnitudes of vibration and three different sitting postures in an attempt to define reference values of apparent mass for applications in mechanical-equivalent model development and anthropodynamic manikin design. Laboratory measurements were performed with adult male subjects of total body mass in the vicinity of 55, 75 and 98 kg (nine subjects for each mass group) seated with and without an inclined back support and exposed to three different magnitudes of white-noise vertical vibration (0.5, 1.0 and 2.0 m/s2 unweighted rms acceleration) in the frequency range between 0.5 and 20 Hz. The measured data were analyzed to derive the mean magnitude and phase responses for the three body masses, posture and excitation conditions. The mean magnitude responses of subjects within three mass groups were compared with idealized ranges defined in ISO 5982 and mean values described in DIN 45676 for no back support condition. The results revealed significant differences between the mean measured and standardized magnitudes, suggesting that the current standardized values do not describe the biodynamic responses of seated occupant of different masses even for the back not supported condition. The mean measured responses revealed most important effect of body mass, irrespective of the sitting posture. The reference values of apparent mass responses of seated body subject to vertical whole-body vibration are thus defined for three mass groups and different back support conditions that may be considered applicable for ranges of excitations considered. The responses of the body seated without a back support, also revealed notable influences of excitation magnitude, particularly on the primary peak frequencies.  相似文献   

18.
《Ergonomics》2012,55(10):1393-1404
Abstract

Background: The purpose of this study was to determine which office chair feature is better at improving spine posture in sitting. Method: Participants (n = 28) were radiographed in standing, maximum flexion and seated in four chair conditions: control, lumbar support, seat pan tilt and backrest with scapular relief. Measures of lumbar lordosis, intervertebral joint angles and sacral tilt were compared between conditions and sex. Results: Sitting consisted of approximately 70% of maximum range of spine flexion. No differences in lumbar flexion were found between the chair features or control. Significantly more anterior pelvic rotation was found with the lumbar support (p = 0.0028) and seat pan tilt (p < 0.0001). Males had significantly more anterior pelvic rotation and extended intervertebral joint angles through L1–L3 in all conditions (p < 0.0001). Conclusion: No one feature was statistically superior with respect to minimising spine flexion, however, seat pan tilt resulted in significantly improved pelvic posture.

Practitioner Summary: Seat pan tilt, and to some extent lumbar supports, appear to improve seated postures. However, sitting, regardless of chair features used, still involves near end range flexion of the spine. This will increase stresses to the spine and could be a potential injury generator during prolonged seated exposures.  相似文献   

19.
《Ergonomics》2012,55(9):1513-1531
A series of experiments has investigated the transmission of roll and pitch seat vibration to the heads of seated subjects. Head motion was measured in all six axes using a light-weight bite-bar while seated subjects were exposed to random motion at frequencies of up to 5 Hz at 1.0 rad.s ?2 r.m.s. Subjects sat on a rigid flat seat in two body postures: ‘back-on’ (back in contact with backrest) and ‘back-off’ (no backrest contact). The influence of the position of the centre of rotation was also investigated.

Motion at the head occurred mostly in the lateral, roll and yaw axes during exposure to roll seat vibration and in the fore-and-aft, vertical and pitch axes during exposure to pitch seat vibration. A reduction in the magnitude of head motion occurred when the subjects sat in a 'back-off' posture compared with a 'back-on' posture. Varying the position of the centre of rotation along the lateral axis during roll seat vibration affected vertical and pitch head motion: least head motion occurred when the centre of rotation was in line with the subject's mid-sagittal plane. Varying the position of the centre of rotation along the vertical axis during roll seat vibration affected head motion in the mid-coronal plane: roll head motion decreased as the position of the centre of rotation was raised from below the seat surface to above the seat surface. Varying the centre of rotation (along the fore-and-aft and vertical axes) during pitch seat vibration altered head motion in the mid-sagittal plane. Head motion increased with increasing distance of the centre of rotation in front or behind the subject's ischial tuberosities and increased as the seat was raised from below the centre of rotation to above the centre of rotation.  相似文献   

20.
J W Yates  W Karwowski 《Ergonomics》1992,35(7-8):889-898
The objective of this project was to compare the muscular effort exerted during manual lifting tasks performed in standing versus seated posture. Six male undergraduate and graduate students performed 12 different static and dynamic lifts in both sitting and standing positions. During each effort electromyographic (EMG) data were collected on four muscles groups (low back, upper back, shoulder, and abdominals). Four contractions were designed to elicit maximum muscular effort in the four groups being monitored. The remaining data were then expressed as a percentage of maximum EMG. Each subject performed the following: maximum static lift when sitting; maximum static lift when standing; sitting, static lift with 15.9 kg; standing, static lift with 15.9 kg; dynamic sit-forward lift with 15.9 kg, dynamic stand-forward lift with 15.9 kg, dynamic sit-twist with 15.9 kg, dynamic stand-vertical lift with 15.9 kg. Each of the lifts was performed with a wooden tray with slotted handles. Root mean square (RMS) values of the EMG data were calculated for three second periods. EMG activity in the low back, upper back, and shoulder was greater during sitting lifting than during standing lifting. The sit-twist lift resulted in the highest EMG in the abdominal muscles. Dynamic lifts resulted in more muscle activity than did static lifts. From these data it was concluded that sitting-lifting results in greater stress in the low back, upper back, and shoulders than does lifting while standing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号