首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnesium alloy, although valuable, is reactive and requires protection before it can be applied in many fields. In this study, a novel protective environmental-friendly gradient coating was performed on AZ91D magnesium alloy by non-chromate surface treatments, which consisted of phytic acid chemical conversion coating and the sol-gel-based CeO2 thin film. The surface morphologies, microstructure and composition of the coatings were investigated by scanning electron microscopy (SEM), energy disperse spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl solution. The effects of the concentration, layers, temperature of heat treatment of CeO2 sol on the anti-corrosion properties of the gradient coating for magnesium were also investigated. The results showed that the gradient coating was mainly composed of crystalline CeO2. According to the results of electrochemical tests, the corrosion resistance of AZ91D magnesium alloy was found to be greatly improved by means of this new environmental-friendly surface treatment.  相似文献   

2.
Protective composite coatings were prepared on magnesium alloy AZ91D by micro-arc oxidation (MAO) treatment plus a top coating with sealing agent using multi-immersion technique under low-pressure conditions. The corrosion resistance of AZ91D alloy with composite coatings was superior evidently to that with merely MAO film. SEM observations revealed that the sealing agent was integrated with MAO film by physically interlocking; therewith covered uniformly the surface as well as penetrated into pores and micro-cracks of MAO film. The anti-corrosion properties in 3.5% NaCl solution of the composite coatings were evaluated by using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. Based on the results of chronopotentiometric (E ∼ t) and EIS measurements for long time immersion in 3.5% NaCl solution, appropriate equivalent circuits for the composite coatings system were proposed. It follows that due to the blocking effect of the sealing agent in pores and cracks in MAO film, the composite coatings can suppress the corrosion process by holding back the transfer or diffusion of electrolyte and corrosion products between the composite coatings and solution during immersion.  相似文献   

3.
AZ91D镁合金表面不同树脂体系富镁涂层的保护性能   总被引:3,自引:0,他引:3       下载免费PDF全文
卢向雨  吴静英  左禹  郑传波 《化工学报》2015,66(11):4578-4587
采用划叉浸泡实验,电化学交流阻抗(electrochemical impedance spectroscopy,EIS),开路电位(open circuit potential,OCP)及动电位扫描研究了不同类型的环氧树脂对于AZ91D镁合金的表面的富镁涂层的保护性能的影响。结果表明环氧618-593构成的富镁涂层防护性能较差;环氧6101-TY650制备的富镁涂层可明显改善涂层对破损处镁合金基体的保护作用,但涂层本身长期防护性能较差;环氧618-T31构成的富镁涂层对AZ91D镁合金的防护作用较强,适宜制备镁合金表面的富镁涂层。3种环氧涂料中加入镁粉颗粒制备的富镁涂层均可对缺陷处裸露的AZ91D镁合金基体提供保护,从而延长漆膜的破坏时间。涂层中的镁粉颗粒被激活后,为镁合金的基体提供了一定程度的阴极保护作用,减缓了镁合金基体的腐蚀。  相似文献   

4.
在AZ 91D镁合金基体上分别制备三元化学镀Ni-Cu-P,Ni-Ce-P镀层,用失重法将试样分别放入质量分数为3.5%的NaCl溶液和质量分数为5%的醋酸溶液中进行耐蚀性对比实验。结果表明:相对于AZ 91D基体,Ni-Cu-P镀层和Ni-Ce-P镀层在质量分数为5%的醋酸溶液中耐蚀性分别提高了50倍和12.8倍,在质量分数为3.5%的NaCl溶液中分别提高了2.76倍和91.63倍;经封孔和热处理封孔后的耐蚀性均有明显提高。实验表明:在AZ 91D镁合金表面化学沉积Ni-Ce-P镀层的综合耐蚀性能优于化学沉积Ni-Cu-P镀层的。该实验有助于解决镁合金的耐蚀性问题、提高其表面性能和拓宽其应用前景。  相似文献   

5.
Eco-friendly vanadia based chemical conversion coating was applied for improving the corrosion resistance of a newly developed magnesium AZ31 HP-O alloy. The effect of vanadia solution concentrations (10, 30 and 50 g/l) and pH on the corrosion protection performance of magnesium substrate were investigated. EIS and cyclic voltammetry techniques were used to evaluate the electrochemical behavior in 3.5% NaCl. Results showed a marked increase in the localized corrosion resistance after applying vanadia surface treatment of 50 g/l as measured by EIS and polarization techniques. The optimum conditions to obtain protective coatings for AZ31 HP-O were determined. The surface morphology, composition and microstructure of conversion coatings were followed by AFM, SEM-EDS and macroscopic imaging techniques.  相似文献   

6.
Eco-friendly vanadia based chemical conversion coating was applied for improving the corrosion resistance of a newly developed magnesium AZ31 HP-O alloy. The effect of vanadia solution concentrations (10, 30 and 50 g/l) and pH (neutral pH 7 and pH 9) on the corrosion protection performance of a magnesium substrate were investigated. EIS and linear polarization techniques were used to evaluate the electrochemical behavior in 3.5% NaCl. The results showed a marked increase in the localized corrosion resistance after applying vanadia surface treatment of 50 g/l due to self-healing effect. The optimum conditions to obtain protective coatings for AZ31 HP-O with a self-healing ability were determined. Changes in surface morphology, composition and microstructure of the conversion coatings were followed by SEM-EDS and macroscopic imaging techniques.  相似文献   

7.
Silicon dioxide sols which can be directly applied on the surface of AZ91D magnesium alloy to improve its corrosion resistance were prepared by two-step process. In this study, tetraethyl orthosilicate (TEOS) and triethoxyvinylsilane (VTEO) were employed as the precursors to prepare SiO2 (TV) sol, as a comparison, the other SiO2 (T) sol prepared by only tetraethyl orthosilicate (TEOS) as precursor was also investigated. Fourier transform infrared (FT-IR) spectrum was performed to analyze the structure differences between the SiO2 (TV) sol and SiO2 (T) sol. The surface morphology of the silicon dioxide coatings was characterized by scanning electron microscope (SEM). The results show that more uniform and denser coatings can be obtained from SiO2 (TV) sol. The corrosion resistance of the AZ91D magnesium alloy coated by silicon dioxide coatings was examined by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5 wt.% NaCl aqueous solution. The results indicate that the corrosion resistance of the AZ91D substrate is greatly improved by the SiO2 (TV) sol coatings.  相似文献   

8.
Electroactive conducting polymer composite coatings of polyaniline (PANI) are electrosynthesized on styrene–butadiene rubber (SBR) coated stainless steel electrode by potentiostatic method using aqueous H2SO4 as supporting electrolyte. The protective behaviour of these coatings in different corrosion media (3.5% NaCl and 0.5 M HCl) is investigated using Tafel polarization curves, open circuit potential measurements and electrochemical impedance spectroscopy. The results reveal that SBR/PANI composite coating is much better in corrosion protection than simple PANI coating. The corrosion potential of composite films shifts to more noble values indicating that SBR/PANI composite coating act as an effective corrosion protective layer.  相似文献   

9.
A double-layer coating was prepared on AZ91D alloy by plasma electrolytic oxidation (PEO) plus electroless plating (EP). The plasma eletrolytic oxidation film was prepared in a silicate bath as an inner layer of the coating. Electroless plated Ni-P layer grew from the pores of the PEO film in a nickelous acetate bath and formed as the outer layer of the coating. The microstructure and crystallographic structure was observed with FESEM and XRD. The corrosion resistance of the double-layer coating was evaluated by means of chronopotentiometric (E-t), potentiodynamic polarization (E-i), neutral salt spray test and electrochemical impedance spectroscopy (EIS) test. Compared with the data of as-cast AZ91D magnesium, the open circuit potential of the double-layer coated AZ91D alloy increased by 1.1815 V, while the self-corrosion current density decreased by two orders of magnitude. E-i, EIS result showed that the corrosion resistance of magnesium alloy AZ91D was improved by the double-layer coating. The salt spray test and polarization test results show that the pitting corrosion resistance of AZ91D alloy was improved greatly. An equivalent circuit was proposed to fit the impedance diagrams of AZ91D alloy with the coating.  相似文献   

10.
The corrosion resistance characteristics of three coatings on magnesium alloy AZ31—conventional paint with phosphate film, cathodic electrodeposition coating (E-coating), and E-coating pretreated with silane (Mg/silane/E-coating)—have been studied by means of electrochemical impedance spectroscopy (EIS) in a 3.5 wt% NaCl neutral aqueous solution and salt spray test using ASTM B117. Silane film was obtained by dipping AZ31 specimens in diluted hydroalcoholic silanic solutions and successively curing. It was found that the corrosion resistance of the Mg alloy with E-coating was superior to conventional paint and could be further enhanced with silane pretreatment as an interfacial film. The results of water volume fraction (Φsaturation) and diffusion coefficient (D) also indicated that the Mg/silane/E-coating possessed excellent compactness and corrosion resistance. A model of the corrosion mechanism for Mg/silane/E-coating has been presented through EIS analysis.  相似文献   

11.
The influence of the microstructure and aluminium content of commercial AZ31, AZ80 and AZ91D magnesium alloys was evaluated in terms of their corrosion behaviour in an aerated 3.5 wt.% NaCl solution at 25 °C. The corrosion process was monitored by electrochemical impedance spectroscopy (EIS). The surface was characterized by scanning electron microscopy (SEM), scanning Kelvin probe force microscopy (SKPFM) and low-angle X-ray diffraction (XRD). The extent of corrosion damage was strongly dependent on the aluminium content and alloy microstructure. Two key factors were observed for the lowest corrosion rates, which occurred for the AZ80 and AZ91D two-phase alloys: the aluminium enrichment on the corroded surface for the AZ80 alloy, and the β-phase (Mg17Al12), which acted as a barrier for the corrosion progress for the AZ80 and AZ91D alloys. Surface potential maps suggested that, between the β-phase and the α-matrix, the galvanic coupling was not significant.  相似文献   

12.
ZrO2 ceramic coatings were prepared in situ on an AZ91D Mg alloy by plasma electrolytic oxidation in a K2ZrF6 solution. The phase composition and the surface morphology of the coatings were examined with X-ray diffraction and scanning electron microscopy. The thermal shock resistance of the coatings was evaluated by a thermal shock test. The corrosion resistance of the coated samples was examined by the polarizing curve method in a 3.5% NaCl solution. The prepared coating was composed of t -ZrO2 and a small amount of c -ZrO2. There were many residual discharging channels on the coating surface. The coated samples showed excellent thermal shock resistance under 500°C, which improved with increasing frequency or decreasing current density or PEO time. Besides, the coating improved the corrosion resistance of AZ91D Mg alloy considerably. In the experiments, the corrosion current density of the coated samples prepared under 1000 Hz was the least, which also decreased with the current density during the PEO process.  相似文献   

13.
Various plasma electrolytic oxidation (PEO) films were prepared on magnesium alloy AZ91D in a silicate bath with different additives such as phosphate, fluoride and borate. Effects of the additives on chemical composition and corrosion resistance of the PEO films were examined by means of scanning electron microscopy (SEM), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. The results showed that the PEO films obtained in solutions with both borate and fluoride had better corrosion resistance. In order to understand the corrosion mechanism of PEO films on magnesium alloy AZ91D, electronic property of the magnesium electrode with PEO films was studied by Mott-Schottky approach in a solution containing borate and chloride. The results indicated that magnesium electrodes with and without PEO films all exhibited n-type semiconducting property. However, in comparison with the magnesium electrode treated in solutions containing phosphate or borate, the electrode treated in solutions containing both borate and fluoride (M-film) had lower donor concentration and much negative flat band potential; therefore, the M-film had lower reactivity and higher corrosion resistance.  相似文献   

14.
利用直流脉冲方法在3种溶液体系中于AZ91D镁合金表面制得了微弧氧化陶瓷膜,分析了各膜层的厚度、显微硬度、相组成和耐蚀性能。结果表明,不同体系中的膜层增厚速率不同,形成膜层的相关成分也不同。通过比较微弧氧化前后镁合金的动电位极化曲线和交流阻抗发现,处理后的AZ91D镁合金的耐蚀性得到了明显改善。  相似文献   

15.
Sol-gel-based coatings exhibit high potentiality to be as an alternative to toxic chromate coatings for surface pre-treatment of metals and alloys. However, as soon as even small defects appear in the coating, the coating cannot stop the development of corrosion process. Present work demonstrates the possibility to use zinc nitrate as healing agent to repair the organic silane coatings in NaCl solution. The zinc nitrate was added to the 0.005 M NaCl solution where AZ91D magnesium alloy coated with organic silane coating was immersed. The healing process and the healing mechanism were investigated by electrochemical measurements and scanning electron microcopy coupled with energy dispersive spectroscopy. The results demonstrated the introduction of zinc nitrate to the electrolyte could stop the development of corrosion process of the coating system and a remarkable recovery on corrosion resistance could be obtained. This effect may be attributed to the formation of zinc oxide/hydroxide on the defective areas, hindering the corrosion activities.  相似文献   

16.
After being pre-plated a zinc layer, an amorphous Al-Mn alloy coating was applied onto the surface of AZ31B magnesium alloy with a bath of molten salts. Then the corrosion performance of the coated magnesium alloy was examined in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the single Zn layer was active in the test solution with a high corrosion rate while the Al-Mn alloy coating could effectively protect AZ31B magnesium alloy from corrosion in the solution. The high corrosion resistance of Al-Mn alloy coating was ascribed to an intact and stable passive film formed on the coating. The performances of the passive film on Al-Mn alloy were further investigated by Mott-Schottky curve and X-ray photoelectron spectroscopy (XPS) analysis. It was confirmed that the passive film exhibited n-type semiconducting behavior in 3.5% NaCl solution with a carrier density two orders of magnitude less than that formed on pure aluminum electrode. The XPS analysis indicated that the passive film was mainly composed of AlO(OH) after immersion for long time and the content of Mn was negligible in the outer part of the passive film. Based on the EIS measurement, electronic structure and composition analysis of the passive film, a double-layer structure, with a compact inner oxide and a porous outer layer, of the film was proposed for understanding the corrosion process of passive film, with which the experimental observations might be satisfactorily interpreted.  相似文献   

17.
Poly(o-anisidine) (POA) and polyaniline (PANI) coatings were synthesized on platinum (Pt) surface and stainless steel (SS) in monomer containing 0.50 M sulphamic acid (SA) solution by means of cyclic voltammetry (CV) technique. Meanwhile, poly(o-anisidine) film was also deposited with a different scan rate on SS electrode. The behaviour of PANI and POA films obtained on stainless steel examined by CV was different from the one obtained for PANI and POA on Pt electrode. The corrosion performances of PANI and POA coatings in 3.5% NaCl solution were investigated with anodic polarization technique and electrochemical impedance spectroscopy (EIS). EIS measurements verified the effect of monomers and that of scan rate on corrosion inhibition of coatings on SS electrode. The results showed that POA film synthesized at low scan rate exhibited an effective anticorrosive property on SS electrode. POA synthesized at low scan rate and PANI coatings provided a remarkable anodic protection to SS substrate for longer exposure time than the one observed for POA coating produced at high scan rate as well as that of bare SS electrode.  相似文献   

18.
This study evaluated the corrosion resistance of AZ91D magnesium alloy coated by composite coatings which consisted of a molybdate conversion coating and three layers of silicon sol–gel coatings. For molybdate conversion treatment, various conditions including the pH of the molybdate baths, immersion time and bath temperature were investigated using electrochemical measurements. The corrosion resistance of the AZ91D magnesium alloy was improved to some extent by the conversion coating with the optimal conversion parameters (7.3 g/L (NH4)6Mo7O24·6H2O solution with pH 5 for 30 min at 30 °C).  相似文献   

19.
以正硅酸乙酯(TEOS)为前躯体,采用溶胶-凝胶技术在微弧氧化处理的AZ91D镁合金基体表面制备了SiO<,2>封孔涂层.采用热重(TG)、能谱(EDS)和扫描电镜(SEM)对凝胶热性能和涂层的成分及微观形貌进行了分析,并对封孔处理前后的试样进行耐蚀性检测.结果表明,封孔处理后,镁合金耐0.1 mol/L硫酸的时间超过...  相似文献   

20.
压铸镁合金阳极氧化膜的研究   总被引:1,自引:0,他引:1  
研究了压铸镁合金AZ91的阳极氧化膜的工艺及其耐蚀性,探讨了镁合金表面阳极氧化膜的组织、相、成分及其耐蚀性。研究结果显示,压铸镁合金AZ91阳极氧化膜表面系氧化物的聚集,阳极氧化膜在3.5%NaCl中的极化曲线与AZ91压铸镁合金的极化曲线对比,阳极氧化膜的极化曲线有明显的钝化区,但在极化区只呈锯齿状变化,耐蚀性较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号