首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
An investigation was made into the corrosion behavior of commercial galvannealed steel in 10−2 mol dm−3 NaCl aqueous solutions and in a tropical marine environment, using scanning electron microscopy (SEM), galvanostatic electrochemical stripping (GES), potentiodynamic linear polarization (PLP), and electrochemical impedance spectroscopy (EIS) techniques and open circuit measurements (E oc). For purposes of comparison, a commercial galvanized steel was also subjected to similar corrosion tests. GES and SEM techniques allowed for the identification of ζ, δ and Γ intermetallic phases and revealed cracks in the galvannealed steel. The PLP, EIS and E oc results indicated that the galvannealed coating was more corrosion resistant than galvanized coating in an aqueous medium, but that their corrosion behaviors were similar in the marine environment. The corrosion behavior of the galvannealed steel was affected by the evolution of the cracking process in the Zn–Fe layer due to the dissolution of zinc-rich phases, while the galvanized steel displayed generalized corrosion in the aqueous medium and localized corrosion in the marine environment.  相似文献   

2.
冷轧钢表面硅烷复合膜的制备及耐蚀性能   总被引:2,自引:0,他引:2       下载免费PDF全文
牛运峰  鲁道荣 《化工学报》2010,61(Z1):72-76
采用浸涂技术,在冷轧钢板(CRS)表面制备掺杂铈离子和铬离子的γ-(2,3-环氧丙氧)丙基三甲氧基硅烷复合膜。通过电化学方法研究硅烷膜在3.50%的氯化钠溶液中的耐蚀性能,并用SEM研究存在复合硅烷膜的冷轧钢在腐蚀前后的形貌变化。结果表明掺杂了铈离子和铬离子的硅烷溶液在pH为4,水解温度为50℃,水解时间为8h条件下水解效果最好,使形成复合硅烷膜的冷轧钢在3.50%的氯化钠溶液中的自腐蚀电流密度下降到1.584×10-7A·cm-2,自腐蚀电位正移。经SEM测试表明,掺杂了铈离子和铬离子的复合硅烷膜在腐蚀前后的形貌几乎不变,耐蚀性能明显优于未掺杂的纯硅烷膜。  相似文献   

3.
The electrochemical behaviour and tribological properties of carbon steel coated with bis-[trimethoxysilylpropyl]amine (BTSPA) filled with SiO2 were evaluated. The silane film filled with SiO2 was prepared by adding different SiO2 concentrations. The electrochemical behaviour of the coated steel was mainly evaluated by means of open-circuit potential (EOC), electrochemical impedance spectroscopy (EIS) and polarization curves, in 0.1 mol L−1 NaCl solution. Structural and morphological characterizations were made by optical, electron and atomic force microscopy (AFM). EOC and EIS data showed that sample filled with 300 ppm SiO2 presented the highest EOC and total impedance value. AFM measurements showed a homogeneous particle distribution of SiO2 particles. Nanohardness measurements showed SiO2 promoted an increase of the hardness mean value (1.70 ± 0.11 GPa to non-filled BTSPA and 2.21 ± 0.05 GPa for sample filled with 300 ppm SiO2). Silane films when filled with SiO2 particles improved the corrosion resistance of the steel substrate. The optimum SiO2 particles concentration in silane solution is 300 ppm SiO2. Incorporation of an extra amount of silica into BTSPA film led to degradation of the corrosion protection of the film to the substrate.  相似文献   

4.
镀锌钢板无机硅烷复合钝化的研究   总被引:2,自引:0,他引:2  
制备了一种含钛、磷、钒的无机混合液,并掺入到硅烷液中,研究其在镀锌钢板表面的钝化行为.通过CUSO4点滴实验、极化曲线法及扫描电子显微镜测试钝化膜的耐蚀性能及表面形貌.结果表明:镀锌钢板的表面经无机-硅烷钝化后,其耐蚀性明显优于单一硅烷钝化膜的.  相似文献   

5.
The electrochemical synthesis of poly(o-anisidine) homopolymer and its copolymerization with pyrrole have been investigated on mild steel. The copolymer films have been synthesized from aqueous oxalic acid solutions containing different ratios of monomer concentrations: pyrrole:o-anisidine, 9:1, 8:2, 6:4, 1:1. The characterization of polymer films were achieved with FT-IR, UV–visible spectroscopy and cyclic voltammetry techniques. The electrochemical synthesis of homogeneous-stable poly(o-anisidine) film with desired thickness was very difficult on steel surface. Therefore its copolymer with pyrrole has been studied to obtain a polymer film, which could be synthesized easily and posses the good physical–chemical properties of anisidine. The kinetics and rate of copolymer film growth were strongly related to monomer feed ratio. The introduction of pyrrole unit into synthesis solution increased the rate of polymerization and the substrate surface became covered with polymer film soon, while this process required longer periods in single o-anisidine containing solution. The protective behavior of coatings has been investigated against steel corrosion in 3.5% NaCl solution. For this aim electrochemical impedance spectroscopy (EIS) and anodic polarization curves were utilized. The synthesized poly(o-anisidine) coating exhibited significant protection efficiency against mild steel corrosion. It was shown that 6:4 ratio of pyrrole and anisidine solution gave the most stable and corrosion protective copolymer coating.  相似文献   

6.
Wei Ye  Fuhui Wang 《Electrochimica acta》2006,51(21):4426-4432
Nanocrystallized (NC) 309 stainless steel (309SS) coating has been fabricated on glass substrate by DC magnetron sputtering. The coating, with an average grain size less than 50 nm, had ferritic (bcc) structure rather than the austenitic (fcc) structure of the bulk steel. The electrochemical corrosion behavior of the NC coating and the bulk steel in solutions of 0.25 M Na2SO4 + 0.05 M H2SO4 and 0.5 M NaCl + 0.05 M H2SO4 was investigated by using potentiodynamic polarization, potentiostatic polarization and AC impedance techniques. The results showed that the corrosion behavior of the NC 309SS coating and 309SS bulk steel depended on the composition of the solutions. In the Na2SO4 solution there was only a little difference between the corrosion resistance of the passive films on the NC coating and the bulk steel. However, in the solution with chloride ions, the localized corrosion resistance of 309SS was greatly enhanced by nanocrystallization due to the formation of a compact and stable passive film on the NC coating. The electronic structure of the passive film formed on the NC coating and on the bulk steel was analyzed by means of capacitance measurements, and a corrosion mechanism is proposed.  相似文献   

7.
The corrosion resistance of AA 2024-T3 and hot-dip galvanized steel (HDG) was studied after treatment with bis-[3-(triethoxysilyl)propyl]tetrasulfide (bis-sulfur silane), bis-[trimethoxysilylpropyl]amine (bis-amino silane), and their mixture. Electrochemical tests in neutral 0.6 M NaCl as well as scanning electronic microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX) were performed. The results showed that: (1) hydrophilic bis-amino silane did not offer good corrosion protection on either of the metals. This is probably because the bis-amino silane film tends to be positively charged. This promotes ingress of anions like Cl ions as well as water into the film by electrostatic attraction. As a result, corrosion readily proceeds at the interface. (2) Hydrophobic bis-sulfur silane performed very well on AA 2024-T3, but failed on HDG. The failure here stems from non-uniform film coverage on HDG owing to an insufficient wetting of bis-sulfur silane solution on the Zn oxide on HDG. Local corrosion initiates at defective sites which are poorly covered by the silane film. (3) A bis-sulfur/bis-amino mixture at the ratio of 3/1 greatly enhanced the corrosion resistance of both AA 2024-T3 and HDG. This substantial improvement is achieved by selectively overcoming the major shortcomings of the individual silanes.  相似文献   

8.
The corrosion resistance characteristics of three coatings on magnesium alloy AZ31—conventional paint with phosphate film, cathodic electrodeposition coating (E-coating), and E-coating pretreated with silane (Mg/silane/E-coating)—have been studied by means of electrochemical impedance spectroscopy (EIS) in a 3.5 wt% NaCl neutral aqueous solution and salt spray test using ASTM B117. Silane film was obtained by dipping AZ31 specimens in diluted hydroalcoholic silanic solutions and successively curing. It was found that the corrosion resistance of the Mg alloy with E-coating was superior to conventional paint and could be further enhanced with silane pretreatment as an interfacial film. The results of water volume fraction (Φsaturation) and diffusion coefficient (D) also indicated that the Mg/silane/E-coating possessed excellent compactness and corrosion resistance. A model of the corrosion mechanism for Mg/silane/E-coating has been presented through EIS analysis.  相似文献   

9.
The electrochemical behavior of single layer TiN, CrN, TiAlN and multilayer TiAlN/CrN coatings, deposited on steel substrates using a multi-target reactive direct current (dc) magnetron sputtering process, was studied in 3.5% NaCl solution. The total thickness of the coatings was about 1.5 μm. About 0.5 μm thick chromium interlayer was used to improve adhesion of the coatings. With an aim to improve the corrosion resistance, an additional interlayer of approximately 5 μm thick electroless nickel (EN) was deposited on the substrate. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to study the corrosion behavior of the coatings. Scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the corroded samples. The potentiodynamic polarization tests showed lower corrosion current density and higher polarization resistance (Rp) for the coatings with EN interlayer. For example, the corrosion current density of TiN coated steel was decreased by a factor of 10 by incorporating 5 μm thick EN interlayer. Similarly, multilayer coatings of TiAlN/CrN with EN interlayer showed about 30 times improved corrosion resistance as compared to the multilayers without EN interlayer. The porosity values were calculated from the potentiodynamic polarization data. The Nyquist and the Bode plots obtained from the EIS data were fitted by appropriate equivalent circuits. The pore resistance (Rpore), the charge transfer resistance (Rct), the coating capacitance (Qcoat) and the double layer capacitance (Qdl) of the coatings were obtained from the equivalent circuit. Multilayer coatings showed higher Rpore and Rct values as compared to the single layer coatings. Similarly, the Qcoat and Qdl values decreased from uncoated substrate to the multilayer coatings, indicating a decrease in the defect density by the addition of EN interlayer. These studies were confirmed by examining the corroded samples under scanning electron microscopy.  相似文献   

10.
Thin-film silane coating (<1 μm) has been introduced as a chromium free multi-metal surface pre-treatment for corrosion protection, adhesion promotion and surface passivation of metals such as aluminium, steel, zinc, magnesium and others. Bis-1,2-(triethoxysilyl)ethane (BTSE) has received much attention as it is, after hydrolysis, highly reactive towards (covalent) metal/film bonding and cross-link formation for the creation of barrier properties. Much of the past work on BTSE was performed on methanol-based laboratory solutions due to the low solubility of BTSE in water. For industrial applications these solutions are not considered suitable anymore because of the high process cost as well as ecological and health issues associated with methanol and the high monomer content of such solutions. For industrial practice water-based silane solutions are being considered. In the present work water-based BTSE solution is compared to a reference methanol-based solution. The silane solution is analysed using 29Si NMR spectroscopy, and the deposited silane films are morphologically characterised using infra-red spectroscopic ellipsometry and field-emission gun-scanning electron microscopy.  相似文献   

11.
Silane sol–gel coatings are widely used as adhesion promoters between inorganic substrates, such as metals, and organic coatings. The aim of these pre-treatments is to enhance the corrosion protection performance of the organic coating improving the adhesion to the substrate and acting as a barrier against water and aggressive ions diffusion. It is a matter of fact that the silane sol–gel pre-treatments do not provide an active protection against corrosion processes except for the partial inhibition of the cathodic reaction. Inorganic pigments can improve the barrier properties of the silane sol–gel film, enhancing the resistance against corrosion. In this study, different amounts of montmorillonite nanoparticles were added to a water based silanes mixture in order to improve the barrier properties of the sol–gel coating. Hot dip galvanized steel was used as substrate. The sol–gel film consists of a combination of three different silanes, GPS, TEOS and MTES. The clay nanoparticles used in this study were mainly neat montmorillonite. The proper concentration of filler inside the sol–gel films was determined comparing the corrosion resistance of silane layers with different nanoparticles contents. Additionally, the effect of CeO2 and Ce2O3 enriched montmorillonite particles. The EIS analysis and the polarization measurements demonstrated that the optimal amount of neat montmorillonite nanoparticles is about 1000 ppm. The same electrochemical techniques highlighted the limited effect of the cerium oxides grafted to the clay nanoparticles on the corrosion resistance of the silane sol–gel film. The TEM analysis proved the presence of a nano-crystalline structure inside the silane sol–gel film due to the formation of crystalline silica domains.  相似文献   

12.
A protective film has been formed on the surface of carbon steel in aqueous environment using a synergistic mixture of an environment-friendly inhibitor, aspartic acid, and Zn2+. The synergistic effect of aspartic acid (AS) in controlling corrosion of carbon steel has been investigated by gravimetric studies in the presence of Zn2+. The formulation consisting of AS and Zn2+ has an excellent inhibition efficiency. The results of potentiodynamic polarization revealed that the formulations are of mixed-type inhibitor. Impedance studies of the metal/solution interface indicated that the surface film is highly protective against the corrosion of carbon steel in the aqueous environment. X-ray photoelectron spectroscopic analysis of the protective film showed the presence of the elements iron, nitrogen, oxygen, carbon, and zinc. The spectra of these elements in the surface film showed the presence of oxides/hydroxides of iron(III), Zn(OH)2, and [Fe(III)/Fe(II)–Zn(II)-AS] complex. Further, surface characterization techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy are used to ascertain the nature of the protective film formed on the carbon steel surface.  相似文献   

13.
Bis-1,2-[triethoxysilylpropyl]tetrasulfide silane films containing CeO2·ZrO2 nanoparticles were deposited by dip-coating on galvanised steel substrates. The morphological features of the coated substrates were evaluated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The anti-corrosion performance of the modified silane film applied on galvanised steel substrates was studied by electrochemical impedance spectroscopy (EIS). The ability of nanoparticles to mitigate localized corrosion activity at artificially induced defects was investigated via the scanning vibrating electrode technique (SVET) and by the scanning ion-selective electrode technique (SIET). The results showed that the addition of nanoparticles provides good corrosion protection of the galvanised steel substrates pre-treated with the modified silane solutions. The corrosion activity was reduced by more than one order of magnitude. Complementary d.c. experiments, using zinc electrodes exposed to NaCl solutions containing the nanoparticles were also performed in order to better understand the role of the nanoparticles. An ennoblement of the corrosion potential and polarisation of the anodic reactions could be detected.  相似文献   

14.
The compatibility between a cataphoretic electro-coating and a silane layer applied on galvanized steel was evaluated by performing electrochemical impedance measurements on coated and uncoated samples. During electro-deposition, the water electrolysis induces hydrogen production. This process can induce degradation or destruction of the silane layer. This process was simulated by reproducing the application conditions of electro-coating in an aqueous solution of same pH (6) and conductivity (1600 μS) than the electro-coating bath, but without any pigments and binder. A current of 2 mA/cm2 was applied between the sample and the counter-electrode during 10 and 20 s. These conditions are representative of the mean real application conditions just before the coating formation. The loss of the barrier effect offered by the silane layer was evaluated by EIS before and after simulation. This simulation shows whether it is possible to conveniently design the properties of the silane layer to maintain its protection and adhesion promotion properties after polarization. The barrier properties and the water uptake of the electro-coated samples were evaluated by EIS as a function of immersion time in a sodium chloride solution (0.1 M). The coated silane pre-treated samples show a good behaviour compared to the samples coated without pre-treatment. By properly managing the deposition conditions of sol–gel films it is possible to obtain cataphoretic coating with improved corrosion resistance. Silane sol–gel films of different thicknesses and curing temperature were produced. It was demonstrated that a 120 nm thick silane sol gel film cured at 180 °C ensures a very good compatibility with the electro-coat. In fact, this system shows a very high corrosion resistance even after 50 days of immersion in a sodium chloride solution. Also the resistance in the salt spray chamber of the electro-coated thin silane layer cured at 180 °C is remarkable. The results confirm that, if conveniently designed, silane sol–gel film properties, the silane layer is a good adhesion promoter of the cataphoretic coating on galvanized steel and this property is maintained for long exposure times.  相似文献   

15.
This paper describes the elaboration of 3-glycidoxypropyltrimethoxysilane (3-GPTMS) films onto AA2024-T3 aluminum alloy for corrosion protection.The dependence of sol–gel morphology on both precipitation under cathodic polarization and nitrate incorporation was investigated via scanning electron microscopy (SEM).Once added into silanization solution, sodium nitrate promoted the reaction of silane condensation and enhanced the film compactness.Electrochemical impedance spectroscopy results (EIS) indicated that doping silane film with NaNO3 ameliorated its barrier property and protectiveness. Silane films applied onto AA2024-T3 surface by using potentiostatic method, exhibited obviously higher corrosion resistance than those obtained by conventional “dip-coating” method. The resistance of coating is accentuated when not very negative potential was applied.  相似文献   

16.
A study of H2S corrosion inhibition of pipeline steel by hydroxyethyl imidazoline has been carried out by using electrochemical techniques. Inhibitor concentration included 5, 10, 25, 50, and 100 ppm in a H2S-containing 3% NaCl solution at 50 °C. Techniques included linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), and electrochemical noise (EN) measurements. In addition to the traditional noise in voltage and current, noise resistance (R n) measurements were used. All techniques showed that the most efficient inhibitor concentration was between 5 and 10 ppm, but inhibitor efficiency decreased after 8 h of testing. Furthermore, EN measurements showed that steel was highly susceptible to localized corrosion at inhibitor doses lower than 10 ppm due to the establishment of a porous inhibitor film. However, with 50 or 100 ppm of inhibitor, the steel was susceptible to a mixture of uniform and localized corrosion. Hurst exponent was higher in presence of inhibitor for times shorter than 8 h, indicating a short residence time of the inhibitor. The data could not be fitted to any adsorption isotherm model, indicating a lack of strong adsorption of the inhibitor to the metal surface.  相似文献   

17.
Galvanised steel substrates were pre-treated in bis-1,2-[triethoxysilyilpropyl]tetrasulphide silane solutions containing SiO2 or CeO2 nanoparticles activated with cerium ions. The surface composition was investigated by infrared spectroscopy. The film thickness was determined by scanning electron microscopy. The results showed that the barrier properties of silane films modified with nanoparticles depend upon the concentration of nanoparticles. The results also showed that the silane film thickness increases when the nanoparticles are activated with cerium ions. The anti-corrosion behaviour of the cerium activated nanoparticles was also investigated at the microscale level, in artificial induced defects, using the scanning vibrating electrode technique (SVET). The substrates treated with the silane coating modified with CeO2 nanoparticles revealed improved corrosion behaviour comparatively to the coatings modified with SiO2 nanoparticles. X-ray photoelectron spectroscopy and Auger electron spectroscopy experiments carried out on the defects after immersion in NaCl solutions revealed the presence of a surface film containing zinc corrosion products and cerium/ceria compounds.  相似文献   

18.
Poly(o-phenylenediamine) (PoPD) was electropolymerized by cyclic voltammetry (CV) on 430 stainless steel from sulfuric acid solution containing o-phenylenediamine monomer. The formation of the polymer film is slower than that of polyaniline (PANI) film. Transparent and compact layers (∼1.0 μm) of PoPD deposited after 100 cycles, while thicker (∼3 μm), grainy and porous layers of PANI formed after 50 cycles. The PoPD layers protect the steel substrate from pitting in 3% NaCl but the layers of PANI fail, and pitting and crevice corrosion were observed on the steel surface. Both polymers keep the steel substrate in a passive state in sulfuric acid. After aging in acid solution the underlying oxides were investigated after peeling off the polymer layers; this showed an excellent passive film formed under PoPD. The passive steel was completely free from pitting after immersion in the chloride solution for 1 week.  相似文献   

19.
Bing Zhao 《Electrochimica acta》2007,52(12):3976-3984
The corrosion behavior of reinforcing steel in cement mortar has been studied by electrochemical noise (EN) compared with the electrochemical impedance spectroscopy (EIS). The wavelet transform, as well as the statistical methods including the standard deviation of current noise (σI) and noise resistance (Rn), has been employed to analyze the EN data of reinforcing steel in mortar. It is revealed that there exist three different corrosion stages of reinforcing steel in cement mortar, including a competition process between breakdown and repassivation of passive film, a pitting development and an active corrosion during the 20 cyclic immersion and drying tests. The energy distribution plot (EDP) is able to provide useful information about the dominant process for the different corrosion stages.  相似文献   

20.
The effects of mill scale on formation and stability of passive film on rebars in chloride-bearing concrete is investigated. Studies were carried out on some electrochemical parameters such as repassivation potential, Erep, and passive current density, ipass, using cyclic potentiodynamic polarization. The superficial mill scale on the rebars was naturally produced during hot-working of steel. The experiments were performed in the concrete samples with a cement/sand/water ratio 1:3:0.6. The results demonstrated that the presence of mill scale on the rebars in chloride-free concrete causes a decrease in electrical resistance of the passive film and its reparability. However in presence of chloride ions because of the severity of corrosion the effect of mill scale on corrosion of rebars is less manifested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号