首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The scale-up of contact dryers is still based on experimental drying curves. In order to keep the effort to a minimum the drying curve is determined using a small laboratory or pilot dryer of similar geometry to the production dryer.

This paper introduces a new scale -up method for contact dryers. The new scale-up method is based on the assumption that heat transfer is the controlling mechanism. The scale-up method is derived from the material balance, the energy balance, the kinetic equation of heat transfer and thermodynamic equilibrium. The scale up method can be used to convert the drying time required to achieve a certain residual moisture content from the laboratory or pilot dryer to the production dryer and/or different drying conditions.

The scale-up method was verified by drying test with four different products in conical mixer dryers of 1, 60, 250, 1000 I volume. Two products were free flowing and two products were non free flowing in the wet state. The products can be considered non-hygroscopic in the moisture range investigated.  相似文献   

2.
Drying subbituminous coal has never been practiced commercially. The commercial dryers built to date have been designed for drying surface moisture in conjunction with upstream coal preparation facilities. This type of drying is mainly controlled by input energy and the basis of the design is an energy balance. In drying inherent moisture from subbituminous coal, the thermal conductivity of the coal and the diffusion of molecular water within coal particles impose limitations on the process conditions. Energy input and solids residence time in the dryer have to be controlled properly for simultaneously balancing the heat and mass transfer within the coal particles. Improper control of either parameter can cause fires and explosions during the key steps of the drying process—drying and cooling

In parallel to the Anaconda coal drying pilot plant program, a cross-flow, fluid-bed coal drying/cooling process simulator was developed for: (1) understanding the drying phenomena on an individual particle basis; (2) analyzing potential risks and safety limits, and (3) designing the Anaconda pilot plant program

The development of the process simulator was based on both first principles and laboratory data and can be divided into two phases:

1 Development of a semi-mechanistic drying model for Powder River Basin subbituminous coal employing an analytical solution of the diffusion equation

2.Formulation of a fluid-bed cross-bed cross-flow dryer/cooler simulator employing simultaneous heat and mass transfer

This model was validated against process variables data taken on a 4 tph pilot plant. An operable range, or process envelope, has been developed through the pilot plant experience and the process simulation study. Based on the model predictions, an uncertainly range was defined in the design recommendations of a pioneer coal drying plant in scale-up.  相似文献   

3.
The items to be considered prior to selection of dryers are explained, and a simple method for a rough estimation of dryer sizes was proposed based on data obtained from operating industrial dryers.

The equations of basic design for batch or continuous type dryers were derived. The heat was supplied to materials by convection and/or conduction. The equations were simplified to the case when the falling rate of drying is proportional to the moisture content of materials under the constant drying conditions. The heat transfer coefficient used in the equations can be determined based on the calculations or the data obtained from the experimental or industrial dryers. The equations are useful for estimating the scale-up effect of dryers.  相似文献   

4.
W. Blumberg 《Drying Technology》1994,12(6):1471-1484
When regarding the atmospheric contact drying of granular beds wetted with a liquid mixture, both the drying rate and the selectivity of the process, i.e. the change of moisture composition, are of interest. The batch drying of a free flowing ceramic substance, wetted with a 2-propanol-water mixture, is investigated in a rotary dryer with heated wall and air flow.

The theoretical analysis is based on physical models for heat and mass transfer, moisture migration and particle transport, which are presented in examples.

The experimental and theoretical results show that higher selectivities can be achieved by reducing the particle size because of the lower liquid-phase mass-transfer resistance. An increase of the rotational speed leads to a higher drying rate with slightly decreased selectivity if the particles are sufficiently small, since contact heat transfer is enhanced.  相似文献   

5.
An overall system model for a countercurrent rotary dryer has been developed with the ullimale aim of assessing controller pairings in these dryers. This model is based on heat and mass balances within dryer regions combined with two subsidiary models, one describing the equipment (which determines particle transport and heat transfer)and the other describing the behaviour of the material (the drying kinetics). Six partial differential equations have been set up to evaluate six state variables: solids moisture content, solids temperature, gas humidity, gas temperature, solids holdup and gas holdup as functions of time and rotary dryer length. A control-volume method has been used to reduce the six partial differential equations with respect to time and the length of the rotary dryer to six ordinary differential equations in time.

The drying model has been implemented in the SPEEDUP flowsheeting package (with FORTRAN subroutines) The model has been validated by fifteen experiments-in a pilot scale countercurrent-flow rotary dryer (0.2m in diameter and 2m in length)  相似文献   

6.
A mathematical model for predicting three-dimensional, two-phase flow, heat and mass transfer inside fluidized-bed dryers has been developed. The model consists of the full set of partial-differential equations that describe the conservation of mass, momentum and energy for both phases inside the dryer, and is coupled with correlations concerning interphase momentum-, heat-, and mass-transfer.

It is shown that the model can predict the most important engineering aspects of a fluidized-bed dryer including pressure drop, particle holdup, temperature distribution in both phases as well as drying efficiency all over the fluidized-bed. Plug-flow conditions are predicted for the gas phase, while back-mixing is predicted for the particles.

The effect of particle mass-flow-rate on fluidized-bed dryer performance is evaluated. It is shown that the lower the particle mass flow-rate, the more intense the horizontal moisture gradients, while the higher the particle rate the more uniform the moisture distribution throughout the bed.  相似文献   

7.
In coating and gravure printing, an impinging jet nozzle with high thermal efficiency for drying of coated film was developed.

Trial production 0f 40 kinds of nozzle enables to develop a high-performance impinging jet nozzle with heat transfer coefficient 1.5 times larger than that of current slit nozzle, through measurement of heat transfer coefficient, visualizations of air flow and heat transfer, and measuremenu of jet velocity and turbulence distribution. The purpose of the trial production was to expand a range of high heat transfer and promote turbulence compared with the current nozzle.

Paying attention to mass transfer within gravure ink coated film, drying characteristic of the film was analyzed by numerical solution of a set of equations governing the drying process in which concentration dependencies 0f the diffusion coefficient and the equilibrium vapor pressure were considered.

Applying these analyses. an industrial scale dryer with excellent drying efficiency has finally been developed.  相似文献   

8.
The objectives of this work are to analyze the drying performance of conical-cylindrical spouted bed (CSB) dryers for three different grains (rice, corn and wheat), and to compare the drying efficiency of CSB dryers with that of spout-fluid bed (SFB) dryers. A PC-program was developed for: (I) -optimization of the CSB dryer dimensions; (2) -simulation of drying grains in the optimized CSB dryer (including start-up period); and, (3) -analysis of the drying performance in a similar SFB dryer.

The liquid diffusion model is used to describe the falling rate drying period. Semi-empirical correlations available in the literature as well as information obtained in the authors' laboratory for spouted and spout-fluidized beds of grains are used to describe the aerodynamic parameters.

The results are presented in terms of the size of the dryer, energy consumption, air handling requirement, drying characteristics etc for different drying conditions. The drying effeciency in a CSB is compared with that in a similar SFB for different grain feed rates and drying temperatures.  相似文献   

9.
This paper explores the influence of temperature and pressure on drying kinetics of 2-(3-benzoylphenil propionic acid) ketoprofen, in a vacuum dryer on laboratory scale, Experimentally determined relations between moisture content and drying rate vs time, were approximated with an exponential model. Model parameters were correlated with drying conditions (temperature, pressure) and defined by functions of their potentions.

From an energy balance of the process, a mathematical model for simulating dependence of sample temperature vs drying time, and moisture content of material, has been developed.

Simulation of the drying kinetics and sample temperature, by use of those functional dependencies shows good agreement with experimental results.  相似文献   

10.
Vibro-fluidized bed dryers are being extensively used in the industry to dry granular particles of wide particle size distribution. For drying applications of limited air inlet temperature and hard to dry granules--high diffusion resistance of moisture inside the qranules--baffles are normally provided in these dryers to increase the residence time of particles. The residence time distribution of granules in vibro-fluidized bed dryers is of high importance to successfully model such dryers. There has been some studies reported in the literature for average residence time of granules in vibro-fluidized beds without baffles, but there has been no work reported for average residence time in vibro-fluidized beds with baffles and residence time distribution for beds with or without baffles. Experimental runs were carried out in this study in the 0.93 m2 (10 ft2 ) pilot plant vibro-fluidized bed dryer with baffles to determine the residence time distribution of dry granules and granule height profile through the length of the dryer.

Among all the dryer operating variables considered in this study, vibration amplitude and baffle spacing were identified as most significant. Values of the average residence time and particle diffusivity were obtained for the entire range of the expected operation of the pilot-scale or commercial scale dryers. These values of average residence time and particle diffusivity, along with the appropriate drying rate (kinetic) data, enable full modeling of vibro-fluidized bed dryers.  相似文献   

11.
Abstract

The items to be considered prior to selection of dryers are explained, and a simple method for a rough estimation of dryer sizes was proposed based on data obtained from operating industrial dryers.

The equations of basic design for batch or continuous type dryers were derived. The heat was supplied to materials by convection and/or conduction. The equations were simplified to the case when the falling rate of drying is proportional to the moisture content of materials under the constant drying conditions. The heat transfer coefficient used in the equations can be determined based on the calculations or the data obtained from the experimental or industrial dryers. The equations are useful for estimating the scale-up effect of dryers.  相似文献   

12.
A nonequilibrium distributed parameter model for rotary drying and cooling processes described by a set of partial differitial equations with nonlinear algebraic constraints is developed in this work. These equations arise from the multi-phase heat and mass balances on a typical rotary dryer. A computational algorithm is devekped by employing a polynonial approximation ( orthogonal collocation) with a glotal splinc technique leading to a differential-algebraic equation ( DAE) system. The numerical solution is carried out by using a standard DAE solver.

The two- phase-flow heat transfer coelficient is computed by introducing a correction factor to the commonly accepted correlations. Since interaction between the falling particles are considered in the correction factor,the results are more reliable than those computed by assuming that heat transfer between a single falling particle and the drying air is unaffected by other particles. The heat transfer computations can be further justified via a study on the analogies between heat and mass transfer.

The general model devloped in this work is mathematically more ritorous yet more flexible that the lumped parameter models established by one of the authors (Douglas et al., (1993)). The three major assumptions of an equilibrium operation, perfect mixing and constant drying raic, are removed in the distributed parameter model.

The simulation results are compared with the operational data from an industrial sugar dryer and predictions from earlier models. The model and algorithm successfully predict the steady state behaviour of rotary dryers and collers. The generalized model can be applied to fertilizer drying processes in which the assumption of constant drying rate is no longer valid and the existing dynamic models are not applicable.  相似文献   

13.
A model for a pneumatic conveying dryer is presented. Although the main emphasis is put on superheated steam drying of wood chips, it can be used for other porous materials as well

The model includes a comprehensive two-dimensional model for the drying of single wood chips which accounts for the main physical mechanisms occurring in wood during drying. The external drying conditions in a pneumatic conveying dryer were calculated by applying the mass, heat and momentum equations for each incremental step in dryer length. A plug flow assumption was made for the dryer model and the single particle and dryer models were solved in an iterative manner. The non-spherical nature of wood chips were accounted for by measuring the drag and heat transfer coefficients

Model calculations illustrate the complex interactions between steam, particles and walls which occur in a flash dryer. The drying rate varies in a very complex manner through the dryer. The internal resistance to mass transfer becomes very important in The drying of less permeable wood species such as spruce. Two effects were observed as the particle size was increased: firstly the heat transfer rate decreased, and secondly the residence time increased. To some extent, these effects compensate for each other, however, the net result is that larger chips have a higher final moisture content.  相似文献   

14.
It is well known in the drying of paper that it is possible reduce the size of the dryer section and/or increase the drying capacity by using vacuum. Furthermore a smaller dryer section contributes to a decrease in the energy losses. However, the use of Minton vacuum dryers in the late 20's was never really successful. Especially with increasing machine speeds maintenance became a problem.

Vacuum drying leads to an improvement in the optical pro- perties of papers made from mechanical pulps. Some physical properties such as softness and porosity may also be improved. When the paper is pressed towards the hot surface under me- chanical pressure during vacuum drying a gain in mechanical properties can be achieved.

In the present investigation, the influence of heat transfer between the web and the hot surface as well as mechanical com-pression of the sheet during vacuum drying have been avoided by using an IR heat source. The results show that the main effect of vacuum is a reduced evaporation temperature. This allows the drying to reach its maximum rate faster. The lower temperature level during vacuum drying also makes cheaper energy sources avilable.  相似文献   

15.
16.
The continuously operated Mechanically Spouted Bed (MSB) dryer of high evaporative capacity can be advantageously used to produce fine powder from paste-like materials, slurries, suspensions and sludges. Due to the thin layer formed on the surface of the spherical inert particles intensive heat and mass transfer occur and the drying process takes place in the constant rate period. Steady state drying conditions can be achieved when the total operational time of partial processes of inert bed drying does not exceed the cycle time of the inert particles.

A laboratory scale MSB dryer has been equipped with a computerised measuring, data acquisition and control system. In the knowledge of the hydrodynamic characteristics of the MSB and giving the enthalpy and mass balances over the dryer a calculation method has been developed for control of drying process.  相似文献   

17.
A summary is given of papers published in the GDR in the field of drying including drying theory, dryer models, sensor development, and analysis of industrial dryers.

Today in the GDR more than 10 000 dryers using 280 000 TJ/a are operated. So drying research and development mainly is driven by practical considerations, but there are pure theoretical approaches to dryer modelling and development of sophisticated drying sensors of general intereet too.  相似文献   

18.
《Drying Technology》2008,26(4):476-486
The objective of this work was the experimental and theoretical study of sawdust drying, in batch and continuous experiences, using a pulsed fluidized bed dryer.

In the batch experiences, a 23 factorial design was used to determine the kinetics of drying, the critical moisture content, and the effective coefficients of both diffusivity and heat transfer, all of them as a function of the velocity and temperature of the air, the speed of turning of the slotted plate that generates the air pulses in the dryer, using sawdust with 65% moisture in each run.

In the continuous operation, a 23 factorial design was used to study the effect of the solid flow and the velocity and temperature of the air on both the product moisture and the distribution of residence times. In order to determine these last ones, digital image processing was used, utilizing sawdust colored by a solution of methylene blue as tracer.

The statistically significant factors were the velocity and the temperature of the heating air, for both the continuous and batch operations. Although the speed of turn of the slotted plate was not significant, it was observed that the air pulses increased the movement of particles, facilitating its fluidization, especially at the beginning of drying.

The heat transfer coefficients were adjusted according to the equation Nu = 0.0014 Rep1.52, whose standard deviation of fit is 0.145.

The period of decreasing rate was adjusted to several diffusivity models, giving the best fit the simplified variable diffusivity model (SVDM). The curve of distribution of residence times was adjusted using the model of tanks in series, with values between 2.6 and 5 tanks.  相似文献   

19.
The development of a mathematical model and a computer program to facilitate the study of thc multi-cylinder paper drying process is presented. Experimentally determined values for different heat and mass transfer coefficients are used to ensure the physical validity of the model. A unique feature of the model is its inclusion of a mass transfer coefficient for the dryer fabric. Thus far. the mass transfer mechanisms in the web have not been included. Two heat transfer coefficients are used to tune the model to actual mill data. They areassigned values that are consistent with experimental data. The agreement between predicted and experimental data, obtained hom nine industrial paper dryers, is generally very good. The investigated basis weights range from 48 to 240 g/m2.

Calculations indicate that the condensate and contact heat transfer coefficients have a major influence on the drying process. The thermal conductivity of the paper and cylinder shell, respectively, are relatively important. whereas the influence of the fabric mass transfer coefficient and the cylinder-fabric-paper heat transfer coefficient are less pronounced. Some guidelines on how to obtain corect values are discussed.  相似文献   

20.
An analytical model for the process is developed. The thermal diffusivity of the drying slabs is assumed infinite and the moisture diffusivity constant during the entire drying process.

With specified initial and boundary conditions, the mathematical model yields a two-part solution for the diffusion equation. The first part is valid for the initial drying during which the surface moisture content exceeds the value of fiber saturation. This part of the solution is used until the surface moisture content drops to the fiber saturation value. The moisture profile at the end of this period is used as the initial condition for the second period of drying which takes place under hygroscopic conditions.

Two simplifying assumptions are adapted for the hygroscopic region: 1. The dependence between the surface temperature and the moisture content is linear. 2. Constant (average) absorption heat is used during this second drying period.

For both parts of the solution, the surface moisture gradient is proportional to the local temperature difference between the drying air and the slab surface. This temperature difference can be expressed by means of a water mass balance equation for the part of the dryer between the slab in-feed and the point considered and by using the thermodynamic properties of the humid air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号