首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acid oil is a by-product in the neutralization step of vegetable oil refining and is an alternative source of biodiesel fuel. A model substrate of acid oil, which is composed of TAG and FFA, was used in experiments on the conversion to FAME by immobilized Candida antarctica lipase. FFA in the mixture of TAG/FFA were efficiently esterified with methanol (MeOH), but the water generated by the esterification significantly inhibited methanolysis of TAG. We thus attempted to convert a mixture of TAG/FFA to FAME by a two-step process comprising methyl esterification of FFA and methanolysis of TAG by immobilized C. antarctica lipase. The first reaction was conducted at 30°C in a mixture of TAG/FFA (1∶1, wt/wt) and 10 wt% MeOH using 0.5 wt% immobilized lipase, resulting in efficient esterification of FFA. The reaction mixture after 24 h was composed of 49.1 wt% TAG, 1.3 wt% FFA, 49.1 wt% FAME, and negligible amounts of DAG and MAG (<0.5 wt%). The reaction mixture was then dehydrated and used as a substrate for the second reaction, which was conducted at 30°C in a solution of the dehydrated mixture and 5.5 wt% MeOH using 6 wt% immobilized lipase. The activity of the lipase increased gradually when the reaction was repeated by transferring the enzyme to a fresh substrate mixture. The activity reached a maximum after 6 cycles, and the content of FAME achieved was >98.5 wt% after a 24-h reaction. The immobilized lipase was very stable in the first-and second-step reactions and could be used for >100 d without significant loss of activity.  相似文献   

2.
The purification of tocopherols and phytosterols (referred to as sterols) from soybean oil deodorizer distillate (SODD) was attempted. Tocopherols and sterols in the SODD were first recovered by short-path distillation, which was named sODD tocopherol/sterol concentrate (SODDTSC). The SODD-TSC contained MAG, DAG, FFA, and unidentified hydrocarbons in addition to the two substances of interest. It was then treated with Candida rugosa lipase to convert sterols to FA steryl esters, acylglycerols to FFA, and FFA to FAME. Methanol (MeOH), however, inhibited esterification of the sterols. Hence, a two-step in situ reaction was conducted: SODDTSC was stirred with 20 wt% water and 200 U/g mixture of C. rugosa lipase at 30°C, and 2 moles of MeOH per mole of FFA was added to the reaction mixture after 16h. The lipase treatment for 40 h in total achieved 80% conversion of the initial sterols to FA steryl esters, complete hydrolysis of the acylglycerols, and a 78% decrease in the initial FFA content by methyl esterification. Tocopherols did not change throughout the process. To enhance the degree of steryl and methyl esterification, the reaction products, FA steryl esters and FAME, were removed by short-path distillation, and the resulting fraction containing tocopherols, sterols, and FFA was treated with the lipase again. Distillation of the reaction mixture purified tocopherols to 76.4% (recovery, 89.6%) and sterols to 97.2% as FA steryl esters (recovery, 86.3%).  相似文献   

3.
We attempted to produce MAG of CLA through lipase-catalyzed esterification of a FFA mixture containing CLA (referred to as FFA-CLA) with glycerol. Screening of lipases showed that MAG-CLA was produced efficiently at 5°C with Penicillium camembertii, Rhizopus oryzae, and Candida rugosa lipases. Among them, C. rugosa lipase was selected because the lipase is widely used as a catalyst for oils and fats processing. The reaction was conducted with agitation of a 300-g mixture of FFA-CLA/glycerol (1∶5, mol/mol), a 200-U/g mixture of C. rugosa lipase, and 2% water. When the reaction was conducted at 30°C, the esterification scarcely proceeded, owing to inhibition of the reaction by glycerol. But the reaction at 5°C eliminated the inhibition and produced MAG efficiently: The degree of esterification reached 93.8% after 58 h, and MAG content in the reaction mixture was 88.4 wt%. To reduce the reaction time, the reactor was connected with a vacuum pump after 24 h, and the reaction was continued with dehydration at 5 mm Hg. The degree of esterification reached 94.7% after 24 h of dehydration (48 h in total), and MAG content increased to 93.0 wt%. Candida rugosa lipase acted a little more strongly on cis-9, trans-11 CLA than on trans-10,cis-12 CLA, but the contents of the two isomers in MAG obtained from a 48-h reaction were the same as the contents in FFA-CLA.  相似文献   

4.
An industrially available preparation of astaxanthin (Ax) from Haematococcus pluvialis contained 41.6 wt% acylglycerols and 24.9 wt% FFA in addition to 14.6 wt% Ax, which was a mixture of free and FA ester forms (free Ax/Ax monoesters/Ax diesters=4.9∶80.3∶14.8, by mol). Enrichment of Ax by a two-step process was attempted. The first step was hydrolysis of acylglycerols with Candida rugosa lipase: A mixture of 1.0 kg H. pluvialis cell extracts, 1.0 L water, and 50 U/g-reaction mixture of the lipase was agitated at 30°C for 42 h. The degree of hydrolysis of acylglycerols reached 94.4%, but Ax esters were not hydrolyzed. Removal of FFA from the resulting oil layer by molecular distillation enriched the content of Ax esters to 40.8 wt5 (named Ax40). The second step was enzymatic conversion of Ax esters to free Ax, which successfully proceeded in the presence of ethanol (EtOH). When a mixture of 50.0 g Ax40, 8.2 g EtOH (5 molar equiv. against FA), 58.2 mL water, and 1500 U/g-mixture of Pseudomonas aeruginosa lipase was stirred at 30°C for 68 h, the free Ax content increased to 89.3 mol%. Free Ax was efficiently recovered by precipitation with n-hexane. The purity of Ax was thereby raised to 70.2 wt% with a 63.9% overall recovery of the initial content in the cell extracts.  相似文献   

5.
The objective of this study was to investigate the use of lipases as catalysts for separating EPA and DHA in fish oil by kinetic resolution based on their FA selectivity. Esterification of FFA from various types of fish oils with glycerol by immobilized Rhizomucor miehei lipase under water-deficient, solvent-free conditions resulted in a highly efficient separation of EPA and DHA. Reactions were conducted at 40°C with a 10% dosage of the lipase preparation under vacuum to remove the coproduced water, thus rapidly shifting the reaction toward the products. The bulk of the FA, together with EPA, were converted into acylglycerols, whereas DHA remained in the residual FFA. As an example, when FFA from tuna oil comprising 5% EPA and 25% DHA were esterified with glycerol, 90% conversion into acylglycerols was obtained after 48 h. The residual FFA contained 78% DHA and only 3% EPA, in 79% DHA recovery. EPA recovery in the acylglycerol fraction was 91%. The type of fish oil and extent of conversion were highly important parameters in controlling the degree of concentration.  相似文献   

6.
Two oils containing a large amount of 2-arachidonoyl-TAG were selected to produce structured TAG rich in 1,3-capryloyl-2-arachidonoyl glycerol (CAC). An oil (TGA58F oil) was prepared by fermentation of Mortierella alpina, in which the 2-arachidonyoyl-TAG content was 67 mol%. Another oil (TGA55E oil) was prepared by selective hydrolysis of a commercially available oil (TGA40 oil) with Candida rugosa lipase. The 2-arachidonoyl-TAG content in the latter was 68 mol%. Acidolysis of the two oils with caprylic acid (CA) using immobilized Rhizopus oryzae lipase showed that TGA55E oil was more suitable than TGA58F oil for the production of structured TAG containing a higher concentration of CAC. Hence, a continuous-flow acidolysis of TGA55E oil was performed using a column (18×125 mm) packed with 10 g immobilized R. oryzae lipase. When a mixture of TGA55E oil/CA (1∶2, w/w) was fed at 35°C into the fixed-bed reactor at a flow rate of 4.0 mL (3.6 g)/h, the degree of acidolysis initially reached 53%, and still achieved 48% even after continuous operation for 90 d. The reaction mixture that flowed from the reactor contained small amounts of partial acylglycerols and tricaprylin in addition to FFA. Molecular distillation was used for purification of the structured TAG, and removed not only FFA but also part of the partial acylglycerols and tricaprylin, resulting in an increase in the CAC content in acylglycerols from 44.0 to 45.8 mol%. These results showed that a process composed of selective hydrolysis, acidolysis, and molecular distillation is effective for the production of CAC-rich structured TAG.  相似文献   

7.
γ-Linolenic acid (GLA) has the physiological functions of modulating immune and inflammatory responses. We produced structured TAG rich in 1,3-dicapryloyl-2-γ-linolenoyl glycerol (CGC) from GLA-rich oil (GLA45 oil; GLA content, 45.4 wt%), which was prepared by hydrolysis of borage oil with Candida rugosa lipase having weak activity on GLA. A mixture of GLA45 oil/caprylic acid (CA) (1∶2, w/w) was continuously fed into a fixed-bed bioreactor (18×180 mm) packed with 15 g immobilized Rhizopus oryzae lipase at 30°C, and a flow rate of 4 g/h. The acidolysis proceeded efficiently, and a significant decrease of lipase activity was not observed in full-time operation for 1 mon. GLA45 oil contained 10.2 mol% MAG and 27.2 mol% DAG. However, the reaction converted the partial acylglycerols to structured TAG and tricaprylin and produced 44.5 mol% CGC based on the content of total acylglycerols. Not only FFA in the reaction mixture but also part of the tricaprylin and partial acylglycerols were removed by molecular distillation. The distillation resulted in an increase of the CGC content in the purified product to 52.6 mol%. The results showed that CGC-rich structured TAG can efficiently be produced by a two-step process comprising selective hydrolysis of borage oil using C. rugosa lipase (first step) and acidolysis of the resulting GLA-rich oil with CA using immobilized R. oryzae lipase (second step).  相似文献   

8.
Synthesis of MAG of CLA with Penicillium camembertii lipase   总被引:1,自引:0,他引:1  
CLA has various physiological activities, and a FFA mixture containing almost equal amounts of cis-9,trans-11 and trans-10,cis-12 CLA (named FFA-CLA) has been commercialized. We attempted to produce MAG of CLA by a two-step successive reaction. The first step was esterification of FFA-CLA with glycerol. A mixture of FFA-CLA/glycerol (1∶5, mol/mol), 2 wt% water, and 200 units/g of Penicillium camembertii mono-and diacylglycerol lipase was agitated at 30°C to form a homogeneous emulsion. The esterification degree reached 84% after 10 h. To further increase the degree, the reaction was continued with dehydration at 5 mm Hg. The esterification degree reached 95% after 24 h (34 h in total), and the reaction mixture contained 50 wt% MAG and 44 wt% DAG. The second step was glycerolysis of the resulting DAG. The reaction mixture in the first-step esterification was transferred from the reactor to a beaker and was solidified by vigorous agitation on ice. When the solidified mixture was allowed to stand at 5°C for 15 d, glycerolysis of DAG proceeded successfully, and MAG content in the reaction mixture increased to 88.6 wt%. Hydrolysis of the acylglycerols was not observed during the second reaction. FA composition in the synthesized MAG was completely the same as that in the original FFA-CLA, showing that Penicillium lipase does not have selectivity toward FA in the FFA-CLA preparation.  相似文献   

9.
A single-cell oil from a Mortierella alpina mutant (TGM17 oil) contains n−9 PUFA: 14.3 wt% 6,9-octadecadienoic acid (18∶2n−9; n−9 LnA) and 17.1 wt% Mead acid (20∶3n−9; MA). Lipase screening indicated that Pseudomonas aeruginosa lipase acted strongly on n−9 LnA and weakly on MA, and Candida rugosa lipase acted weakly on the two PUFA. Hence, fractionation and enrichment of the two FA were conducted with the lipases. The first step was selective hydrolysis of IGM17 oil with P. aeruginosa lipase. The hydrolysis fractionated the oil into FFA containing 20.4 wt% n−9 LnA and 6.3 wt% MA, and acylglycerols containing 10.7 wt% n−9 LnA and 23.7 wt% MA. The FFA fraction was used for preparation of n−9 LnA-rich FFA. After removal of saturated FA, the FFA were esterified with lauryl alcohol (LauOH) using C. rugosa lipase. Two selective esterifications increased the n−9 LnA content to 54.0 wt% with 38.2% recovery of the initial content of TGM17 oil. The acylglycerol fraction obtained in the hydrolysis with P. aeruginosa lipase was used for preparation of MA-rich FFA. The acylglycerol fraction was hydrolyzed under alkaline conditions, and saturated FA were eliminated by urea adduct fractionation. Two selective esterifications of the FFA with LauOH increased the MA content to 60.2 wt% with 53.5% recovery. Thus, the two-step enzymatic process was effective for fractionation and enrichment of n−9 LnA and MA.  相似文献   

10.
Biodiesel is conventionally produced by alkaline‐catalyzed transesterification, which requires high‐purity oils. However, low‐quality oils can be used as feedstocks for the production of biodiesel by enzyme‐catalyzed reactions. The use of enzymes has several advantages, such as the absence of saponification side reactions, production of high‐purity glycerol co‐product, and low‐cost downstream processing. In this work, biodiesel was produced from lipase‐catalyzed hydrolysis of waste cooking oil (WCO) followed by esterification of the hydrolyzed WCO (HWCO). The hydrolysis of acylglycerols was carried out at 30 °C in salt‐free water (WCO/water ratio of 1:4, v/v) and the esterification of HWCO was carried out at 40 °C with ethanol in a solvent‐free medium (HWCO/ethanol molar ratio of 1:7). The hydrolysis and esterification steps were carried out using immobilized Thermomyces lanuginosus lipase (TLL/WCO ratio of 1:5.6, w/w) and immobilized Candida antarctica lipase B (10 wt%, CALB/HWCO) as biocatalysts, respectively. The hydrolysis of acylglycerols was almost complete after 12 h (ca. 94 %), and in the esterification step, the conversion was around 90 % after 6 h. The purified biodiesel had 91.8 wt% of fatty acid ethyl esters, 0.53 wt% of acylglycerols, 0.003 wt% of free glycerol, viscosity of 4.59 cP, and acid value of 10.88 mg KOH/g. Reuse hydrolysis and esterification assays showed that the immobilized enzymes could be recycled five times in 10‐h batches, under the conditions described above. TLL was greatly inactivated under the assay conditions, whereas CALB remained fully active. The results showed that WCO is a promising feedstock for use in the production of biodiesel.  相似文献   

11.
Soybean oil deodorizer distillate (SODD) contains steryl esters in addition to tocopherols and sterols. Tocopherols and sterols have been industrially purified from SODD but no purification process for steryl esters has been developed. SODD was efficiently separated to low b.p. substances (including tocopherols and sterols) and high b.p. substances (including 11.2 wt% DAG, 32.1 wt% TAG, and 45.4 wt% steryl esters) by molecular distillation. The high b.p. fraction is referred to as soybean oil deodorizer distillate steryl ester concentrate (SODDSEC). We attempted to purify steryl esters after a lipase-catalyzed hydrolysis of acylglycerols in SODDSEC. Screening of industrially available lipases indicated that Candida rugosa lipase was most effective. Based on the study of several factors affecting hydrolysis, the reaction conditions were determined as follows: ratio of SODDSEC/water, 1∶1 (w/w); lipase amount, 15 U/g reaction mixture; temperature, 30°C. When SODDSEC was agitated for 24 h under these conditions, acylglycerols were almost completely hydrolyzed and the content of steryl esters did not change. However, study with a mixture of steryl oleate/trilinolein (1∶1, w/w) indicated that about 20% of constituent FA in steryl esters were exchanged with constituent FA in acylglycerols. Steryl esters in the oil layer obtained by the SODDSEC treatment with lipase were successfully purified by molecular distillation (purity, 97.3%; recovery, 87.7%).  相似文献   

12.
Tocopherols have been purified from deodorizer distillate produced in the final deodorization step of vegetable oil refining by a process including molecular distillation. Deodorizer distillate contains mainly tocopherols, sterols, and free fatty acids (FFA); the presence of sterols hinders tocopherol purification in good yield. We found that Candida rugosa lipase recognized sterols as substrates but not tocopherols, and that esterification of sterols with FFA could be effected with negligible influence of water content. Enzymatic esterification of sterols with FFA was thus used as a step in tocopherol purification. High boiling point substances including steryl esters were removed from soybean oil deodorizer distillate by distillation, and the resulting distillate (soybean oil deodorizer distillate tocopherol concentrate; SODDTC) was used as a starting material for tocopherol purification. Several factors affecting esterification of sterols were investigated, and the reaction conditions were determined as follows: A mixture of SODDTC and water (4∶1, w/w) was stirred at 35°C for 24 h with 200 U of Candida lipase per 1 g of the reaction mixture. Under these conditions, approximately 80% of sterols was esterified, but tocopherols were not esterified. After the reaction, tocopherols and FFA were recovered as a distillate by molecular distillation of the oil layer. To enhance further removal of the remaining sterols, the lipase-catalyzed reaction was repeated on the distillate under the same reaction conditions. As a result, more than 95% of the sterols was esterified in total. The resulting reaction mixture was fractionated to four distillates and one residue. The main distillate fraction contained 65 wt% tocopherols with low contents of FFA and sterols. In addition, the residue fraction contained high-purity steryl esters. Because the process presented in this study includes only organic solvent-free enzymatic reaction and molecular distillation, it is feasible as a new industrial purification method of tocopherols. This work was presented at the Biocatalysis symposium in April 2000, held at the 91st Annual Meeting and Expo of the American Oil Chemists Society, San Diego, CA.  相似文献   

13.
Purification of docosahexaenoic acid (DHA) was attempted by a two-step enzymatic method that consisted of hydrolysis of tuna oil and selective esterification of the resulting free fatty acids (FFA). When more than 60% of tuna oil was hydrolyzed with Pseudomonas sp. lipase (Lipase-AK), the DHA content in the FFA fraction coincided with its content in the original tuna oil. This lipase showed stronger activity on the DHA ester than on the eicosapentaenoic acid ester and was suitable for preparation of FFA rich in DHA. When a mixture of 2.5 g tuna oil, 2.5 g water, and 500 units (U) of Lipase-AK per 1 g of the reaction mixture was stirred at 40°C for 48 h, 83% of DHA in tuna oil was recovered in the FFA fraction at 79% hydrolysis. These fatty acids were named tuna-FFA-Ps. Selective esterification was then conducted at 30°C for 20 h by stirring a mixture of 4.0 g of tuna-FFA-Ps/lauryl alcohol (1:2, mol/mol), 1.0 g water, and 1,000 U of Rhizopus delemar lipase. As a result, the DHA content in the unesterified FFA fraction could be raised from 24 to 72 wt% in an 83% yield. To elevate the DHA content further, the FFA were extracted from the reaction mixture with n-hexane and esterified again under the same conditions. The DHA content was raised to 91 wt% in 88% yield by the repeated esterification. Because selective esterification of fatty acids with lauryl alcohol proceeded most efficiently in a mixture that contained 20% water, simultaneous reactions during the esterification were analyzed qualitatively. The fatty acid lauryl esters (L-FA) generated by the esterification were not hydrolyzed. In addition, L-FA were acidolyzed with linoleic acid, but not with DHA. These results suggest that lauryl DHA was generated only by esterification.  相似文献   

14.
We attempted to synthesize high-purity structured triacylglycerols (TAG) with caprylic acid (CA) at the 1,3-positions and a polyunsaturated fatty acid (PUFA) at the 2-position by a two-step enzymatic method. The first step was synthesis of TAG of PUFA (TriP), and the second step was acidolysis of TriP with CA. Candida antarctica lipase was effective for the first reaction. When a reaction medium of PUFA/glycerol (3∶1, mol/mol) and 5% immobilized Candida lipase was mixed for 24 h at 40°C and 15 mm Hg, syntheses of TAG of γ-linolenic, arachidonic, eicosapentaenoic, and docosahexaenoic acids reached 89, 89, 88, and 83%, respectively. In these reactions, the lipase could be used for at least 10 cycles without significant loss of activity. In the second step, the resulting trieicosapentaenoin was acidolyzed at 30°C for 48h with 15 mol parts CA using 7% of immobilized Rhizopus delemar lipase. The CA content in the acylglycerol fraction reached 40 mol%. To increase the content further, the acylglycerols were extracted from the reaction mixture with n-hexane and were allowed to react again with CA under conditions similar to those of the first acidolysis. After three successive acidolysis reactions, the CA content reached 66 mol%. The content of dicapryloyl-eicosapentaenoyl-glycerol reached 86 wt% of acylglycerols, and the ratio of 1,3-dicapryloyl-2-eicosapentaenoyl-glycerol to 1(3),2-dicapryloyl-3(1)-eicosapentaenoyl-glycerol was 98∶2 (w/w). In this reaction, the lipase could be used for at least 20 cycles without significant loss of activity. Repeated acidolysis of the other TriP with CA under similar conditions synthesized 1,3-dicapryloyl-2-γ-linolenoyl-glycerol, 1,3-dicapryloyl-2-arachidonoyl-glycerol, and 1,3-dicapryloyl-2-docosahexaenoyl-glycerol in yields of 58, 87, and 19 wt%, respectively.  相似文献   

15.
Production of MAG with CLA using Penicillium camembertii mono- and diacylglycerol lipase (referred to as lipase) was attempted for the purpose of expanding the application of CLA. The commercial product of CLA (referred to as FFA-CLA) is a FFA mixture containing almost equal amounts of 9cis,11trans (9c,11t)-CLA and 10t,12c-CLA. Esterification of FFA-CLA with glycerol without dehydration achieved 84% esterification but produced almost equal amounts of MAG and DAG. Esterification with dehydration not only achieved a high degree of esterification but also suppressed the formation of DAG. When a mixture of FFA-CLA/glycerol (1∶2, mol/mol), 1% water, and 200 units/g-mixture of P. camembertii lipase was agitated at 30°C for 72 h with dehydration at 5 mm Hg, the degree of esterification reached 95% and the contents of MAG and DAG were 90 and 6 wt%, respectively. This reaction system may be applied to the industrial production of MAG with unstable CLA.  相似文献   

16.
γ-Linolenic acid (GLA) was purified from borage oil by a two-step enzymatic method. The first step involved hydrolysis of borage oil (GLA content, 22.2 wt%) with lipase, Pseudomonas sp. enzyme (LIPOSAM). A mixture of 3 g borage oil, 2 g water, and 5000 units (U) LIPOSAM was incubated at 35°C with stirring at 500 rpm. The reaction was 91.5% complete after 24 h. The resulting free fatty acids (FFA) were extracted from the reaction mixture with n-hexane (GLA content, 22.5 wt%; recovery of GLA, 92.7%). The second step involved selective esterification of borage-FFA with lauryl alcohol by using Rhizopus delemar lipase. A mixture containing 4 g borage-FFA/lauryl alcohol (1:2, mol/mol), 1 g water, and 1000 U lipase was incubated at 30°C for 20 h with stirring at 500 rpm. Under these conditions, 74.4% of borage-FFA was esterified, and the GLA content in the FFA fraction was enriched from 22.5 to 70.2 wt% with a recovery of 75.1% of the initial content. To further elevate the GLA content, unesterified fatty acids were extracted, and esterified again in the same manner. By this repeated esterification, GLA was purified to 93.7 wt% with a recovery of 67.5% of its initial content.  相似文献   

17.
Purification of arachidonic acid (AA) from Mortierella alpina single-cell oil was attempted. The process comprised three steps: (i) preparation of FFA by nonselective hydrolysis of the oil with Alcaligenes sp. lipase; (ii) elimination of long-chain saturated FA from the resulting FFA by urea adduct fractionation; and (iii) enrichment of AA through lipase-catalyzed selective esterification with lauryl alcohol (LauOH). In the third step, screening of industrially available lipases indicated that Burkholderia cepacia lipase (Lipase-PS, Amano Enzyme Inc., Aichi, Japan) acted on AA more weakly than on other FA and was the most effective for enrichment of AA in the FFA fraction. When the FFA obtained by urea adduct fractionation were esterified with 2 molar equivalents of LauOH at 30°C for 16 h in a mixture with 20% water and 20 units (U)/g-mixture of Lipase-PS, the esterification reached 39% and the content of AA in the FFA fraction was raised from 61 to 86 wt%. To further increase the content of AA, unesterified FFA were allowed to react again under the same conditions as those in the first selective esterification except for the use of 50 U/g Lipase-PS. A series of procedures raised the content of AA to 97 wt% with a 49% recovery based on the initial content in the single-cell oil. These results indicated that the three-step process for selective esterification with Lipase-PS was effective for purifying AA from the single-cell oil.  相似文献   

18.
Conversion of oleic acid phytosteryl esters (OASE) to free phytosterols (referred to as sterols) by an enzymatic process was attempted. Enzymatic hydrolysis of OASE reached a steady state at 55–60% hydrolysis, but addition of methanol (MeOH) significantly accelerated the conversion of OASE to sterols. Screening of commercially available enzymes indicated that Pseudomonas aeruginosa lipase was most effective for the conversion. Based on the study of several factors affecting the reaction, the optimal conditions were determined as follows: ratio of OASE to MeOH, 1∶2 (mol/mol); water content, 10 wt%; lipase amount, 20 U/g by weight of reaction mixture; temperature, 30°C. When the reaction was conducted for 48 h with stirring, the conversion reached 98%. FAME accumulated in the reaction mixture, but FFA did not, indicating that the FAME was poorly recognized as a substrate in the reverse conversion of sterols to OASE but the FFA was easily recognized as a substrate. The high conversion of OASE to sterols was therefore due to elimination of FFA from the reaction system. After the enzymatic reaction, the oil layer was fractionated at −20°C with 5 vol parts of n-hexane. Sterols were efficiently purified in the resulting precipitate (92% recovery, 99% purity).  相似文献   

19.
The isolation of tocopherols and sterols together as a concentrate from sunflower oil deodorizer distillate was investigated. The sunflower oil deodorizer distillate was composed of 24.9% unsaponifiable matter with 4.8% tocopherols and 9.7% sterols, 28.8% free fatty acid (FFA) and 46.3% neutral glycerides. The isolation technology included process steps such as biohydrolysis, bioesterification and fractional distillation. The neutral glycerides of the deodorizer distillates were hydrolyzed byCandida cylindracea lipase. The total fatty acids (initial FFA plus FFA from neutral glycerides) were converted into butyl esters withMucor miehei lipase. The esterified product was then fractionally distilled in a Claisen-vigreux flask. The first fraction, which was collected at 180–230°C at 1.00 mm of Hg for 45 min, contained mainly butyl esters, hydrocarbons, oxidized products and some amount of free fatty acids. The fraction collected at 230–260°C at 1.00 mm Hg for 15 min was rich in tocopherols (about 30%) and sterols (about 36%). The overall recovery of tocopherols and sterols after hydrolysis, esterification and distillation were around 70% and 42%, respectively, of the original content in sunflower oil deodorizer distillate.  相似文献   

20.
The production of simple alkyl FA esters by direct alkali-catalyzed in situ transesterification of the acylglycerols (AG) in soybeans was examined. Initial experiments demonstrated that the lipid in commercially produced soy flakes was readily transesterified during agitation at 60°C in sealed containers of alcoholic NaOH. Methyl, ethyl, and isopropyl alcohols readily participated in the reaction, suggesting that the phenomenon is a general one. Statistical experimental design methods and response surface regression analysis were used to optimize reaction conditions, using methanol as alcohol. At 60°C, the highest yields of methyl ester with minimal contamination by FFA and AG were predicted at a molar ratio of methanol/AG/NaOH of 226∶1∶1.6 with an approximately 8-h incubation. An increase in the amount of methanol, coupled with a reduced alkali concentration, also gave high ester yields with low FFA and AG contamination. The reaction also proceeded well at 23°C (room temperature), giving higher predicted ester yields than at 60°C. At room temperature, maximal esterification was predicted at a molar ratio of 543∶1∶2.0 for methanol/AG/NaOH, again in 8 h. Of the lipid in soy flakes, 95% was removed under such conditions. The amount of FAME recovered after in situ transesterification corresponded to 84% of this solubilized lipid. Given the 95% removal of lipid from the soy flakes and an 84% efficiency of conversion of this solubilized lipid to FAME, one calculates an overall transesterification efficiency of 80%. The FAME fraction contained only 0.72% (mass basis) FFA and no AG. Of the glycerol released by transesterification, 93% was located in the alcoholic ester phase and 75 was on the post-transesterification flakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号