首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrocortisone (HC) as well as its synthetic derivatives have been shown to strongly enhance interleukin-4 (IL-4)-induced in vitro IgE synthesis. To investigate possible effects on IgG subclasses, peripheral blood mononuclear cells (PBMC) were incubated with different glucocorticosteroids in the absence or presence of IL-4. The glucocorticoids alone led to a strongly enhanced secretion of IgG1, IgG2 and IgG3, but not IgG4. The addition of IL-4 induced marked increases in IgG1 and IgG4, no changes in IgG3, but a consistent decrease in IgG2 synthesis. In order to find out whether these profound in vitro effects of corticosteroids are also reflected by changes in antibody serum levels during steroid treatment, 10 healthy volunteers took 25 mg prednisone for 7 consecutive days. We could not observe any significant changes of IgE or IgG subclass serum levels during or after this period. However, cell cultures performed after the glucocorticoid treatment revealed a marked decrease in the ability to produce IgG4 and a significantly lower potential to produce IgE in response to IL-4 alone or IL-4 and HC. We conclude that, although strongly implicated by the in vitro results, glucocorticosteroid treatment does not result in an increased allergy risk.  相似文献   

2.
Docking algorithms play an important role in the process of rational drug design and in understanding the mechanism of molecular recognition. An important determinant for successful docking is the extent to which the configurational space (including conformational changes) of the ligand/receptor system is searched. Here we describe a new, combinatorial method for flexible docking of peptides to proteins that allows full rotation around all single bonds of the peptide ligand and around those of a large set of receptor side chains. We have simulated the binding of several viral peptides to murine major histocompatibility complex class I H-2Kb. In addition, we have explored the limits of our method by simulating a complex between calmodulin and an 18-residue long helical peptide from calmodulin-dependent protein kinase IIalpha. The calculated peptide conformations generally matched well with the X-ray structures. Essential information about local flexibility and about residues that are responsible for strong binding was obtained. We have frequently observed considerable side-chain flexibility during the simulations, showing the need for a flexible treatment of the receptor. Our method may also be useful whenever the receptor side-chain conformation is not available or uncertain, as illustrated by the docking of an H-2Kb binding nonapeptide to the receptor structure taken from an octapeptide/H-2Kb complex.  相似文献   

3.
Previous studies demonstrated that nanomolar concentrations of nocodazole can block cells in mitosis without net microtubule disassembly and resulted in the hypothesis that this block was due to a nocodazole-induced stabilization of microtubules. We tested this hypothesis by examining the effects of nanomolar concentrations of nocodazole on microtubule dynamic instability in interphase cells and in vitro with purified brain tubulin. Newt lung epithelial cell microtubules were visualized by video-enhanced differential interference contrast microscopy and cells were perfused with solutions of nocodazole ranging in concentration from 4 to 400 nM. Microtubules showed a loss of the two-state behavior typical of dynamic instability as evidenced by the addition of a third state where they exhibited little net change in length (a paused state). Nocodazole perfusion also resulted in slower elongation and shortening velocities, increased catastrophe, and an overall decrease in microtubule turnover. Experiments performed on BSC-1 cells that were microinjected with rhodamine-labeled tubulin, incubated in nocodazole for 1 h, and visualized by using low-light-level fluorescence microscopy showed similar results except that nocodazole-treated BSC-1 cells showed a decrease in catastrophe. To gain insight into possible mechanisms responsible for changes in dynamic instability, we examined the effects of 4 nM to 12 microM nocodazole on the assembly of purified tubulin from axoneme seeds. At both microtubule plus and minus ends, perfusion with nocodazole resulted in a dose-dependent decrease in elongation and shortening velocities, increase in pause duration and catastrophe frequency, and decrease in rescue frequency. These effects, which result in an overall decrease in microtubule turnover after nocodazole treatment, suggest that the mitotic block observed is due to a reduction in microtubule dynamic turnover. In addition, the in vitro results are similar to the effects of increasing concentrations of GDP-tubulin (TuD) subunits on microtubule assembly. Given that nocodazole increases tubulin GTPase activity, we propose that nocodazole acts by generating TuD subunits that then alter dynamic instability.  相似文献   

4.
The aim of this study was to determine the intracellular pharmacokinetics of mitoxantrone in vivo and to use these results to establish how leukemic cells should be incubated to perform clinically relevant in vitro studies of this drug. Blood samples were obtained from 11 patients with acute nonlymphoblastic leukemia at certain intervals up to 20 h after the infusion of mitoxantrone 12 mg/m2. Plasma and leukemic cells were separated and the drug concentrations were determined with HPLC. Before treatment, leukemic cells from 12 patients were incubated with 0.02, 0.05, 0.1, 0.2 and 1.0 microM mitoxantrone for 1-4 h and thereafter cultured in suspension culture for 20 h; during this time cell samples were taken at certain intervals for drug determination. In cells incubated with 0.05 and 0.2 microM mitoxantrone the cytotoxic effect was measured with the DiSC assay after cultivation for 4-5 days. In vivo, the intracellular levels exceeded the plasma concentrations already at the end of infusion and after 2 h the intracellular concentrations were 200-300 times higher than in plasma. In vitro, the intracellular steady state level of mitoxantrone was reached after 1-2 h and there was a pronounced intracellular retention even after 20 h culture in drug-free medium. Incubation with 0.05 microM during 1 h gave intracellular concentrations of mitoxantrone similar to those achieved in vivo. This incubation concentration gave a mean cytotoxic effect of 53% living cells measured with the DiSC assay, which gives good possibilities to discriminate between mitoxantrone-sensitive and unsensitive cells. We believe that exposing leukemic cells in vitro for in vivo mimicking mitoxantrone concentrations could increase the clinical relevance of predictive assays.  相似文献   

5.
The effect of glucocorticoid (GC) treatment on expression and release of the monocyte cell surface LPS receptor Ag CD14 was studied in vivo and in vitro. In patients with acute inflammatory diseases receiving GC pulse therapy serum concentrations of soluble CD14 and CD14 expression by peripheral blood monocytes decreased significantly. The LPS-binding capacity correlated positively with the amount of cell surface CD14 by human blood monocytes. In vitro, a time- and dose-dependent effect of GC preparations on monocyte membrane and soluble CD14 by cultured peripheral blood monocytes was found. Incubation with 2 x 10(-8) M prednisolone down-regulated cell surface CD14 after 72 h, and 2 x 10(-7) M suppressed CD14 expression even after 24 h. Prednisolone also decreased release of the soluble CD14 Ag, where a 10-fold higher GC concentration was required for a significant suppression compared with membrane CD14 during culture. Expression of other monocyte membrane Ags were either unchanged (CD33, CD35), diminished (CD13, CD89), or increased (CD32) by GC, indicating no general down-modulation of cell surface Ag expression. Preincubation with glucocorticoids for 24 h significantly down-regulated CD14 expression during subsequent steroid-free culture for at least 7 days. In cultured monocytes, the LPS-induced increase of membrane and soluble CD14 was markedly but not completely inhibited by prednisolone. Therefore, GC treatment suppresses the up-regulation of the LPS receptor during endotoxin challenge, and likewise, the IL-1 secretion after LPS stimulus was significantly diminished. Taken together, the suppression of the monocytic cell surface and soluble endotoxin receptor CD14 by GC may contribute to the increased risk of infections in patients undergoing steroid therapy.  相似文献   

6.
Stimulation of pancreatic acini from male Sprague-Dawley rats by both cholecystokinin (CCK)-8 and anisomycin caused an increase in p46jnk and p55jnk activities. Both forms of c-Jun amino-terminal kinase (JNK) were slightly activated at 5 min, reached a maximum at 30 min, and remained significantly increased at 60 min of CCK stimulation. By contrast, p42mapkwas activated fully by 5 min. In pancreatic acini stimulated with different concentrations of CCK for 30 min, the minimal and maximal JNK responses were observed at 30 pm and 100 nM CCK, respectively; p42mapk activation was, as previously reported, much more sensitive, with maximal activation by 1 nm CCK. Carbachol and bombesin also stimulated JNK activity, while vasoactive intestinal peptide did not. Neither activating protein kinase C nor increasing intracellular Ca2+ significantly activated JNK. In in vivo experiments, rats were infused intravenously for 5 and 15 min with a secretory (0.1 microg/kg/h) or supramaximal (10 microg/kg/h) dose of the CCK analog caerulein (CER). Secretory doses of CER induced a 4-fold increase of both forms of JNK in pancreatic tissue at 5 and 15 min, while at the same time points, supramaximal stimulation with CER caused 4- and 27-fold increases, respectively, of these kinase activities. The secretory dose of CER slightly increased the activities of both forms of mitogen-activated protein kinase, while the supramaximal dose induced a 10-fold increase of p42mapk at 5 min. In conclusion, JNKs and mitogen-activated protein kinases are rapidly activated in rat pancreatic acini stimulated with CCK as well as in pancreatic tissue during in vivo stimulation with CER. The large response to supramaximal CER stimulation may be of importance in the early pathogenesis of acute pancreatitis.  相似文献   

7.
The recent isolation of cDNAs encoding the rat pituitary gonadotropin-releasing hormone receptor (GnRHR) allows studies of the regulation of the synthesis of the GnRHR and its relationship to reproductive function. Analyses of the regulation of GnRHR mRNA levels in the rat pituitary in vivo revealed a progressive increase in levels to 2.0 +/- 0.2-fold after ovariectomy (OVX) and 5.2 +/- 1.3-fold after castration (CAST) (21 days post-operative), compared to intact adult female and male controls, respectively. Replacement therapy with 17 beta-estradiol benzoate in 21-day post-OVX female rats resulted in a marked decrease in GnRHR mRNA levels by 7 days, compared to controls. In contrast, therapy with testosterone propionate in 21-day post-CAST male rats resulted in only a modest decrease in GnRHR mRNA levels. Thus, manipulation of the reproductive endocrine system in vivo results in alterations in GnRHR synthesis at the pretranslational level, which parallel known changes in cell surface gonadotropin-releasing hormone (GnRH) binding activities. The treatment of superfused primary monolayer cultures of rat pituitary cells with hourly pulses of GnRH (10 nM, 6 min/h) resulted in a marked increase in GnRHR mRNA levels (12.8 +/- 4.3-fold compared to untreated cells). In contrast, treatment of cultured cells with continuous GnRH caused no change in GnRHR mRNA levels. These in vitro data show homologous regulation of GnRHR gene expression by GnRH, and suggest that the changes in GnRHR gene expression observed in vivo may be attributable at least in part to changes in the pattern of hypothalamic GnRH secretion.  相似文献   

8.
To evaluate cardiopulmonary involvement in schistosomiasis mansoni, 246 patients from an endemic area of Brazil were examined; 152 had been previously treated for schistosomiasis. Based on stool examination and/or abdominal ultrasonography, the patients were divided into those with schistosomiasis (69%) and those in whom the disease was not present (31%). M mode measurements were similar in the 2 groups. Pulmonary pressure was measured by Doppler echocardiography; 25% of the subjects had pulmonary hypertension. Those with pulmonary hypertension had a higher prevalence of schistosomiasis (80%) than those without (64%; P = 0.03). No case of cor pulmonale was diagnosed by electrocardiography or Doppler echocardiography. The prevalence of pulmonary hypertension correlated neither with periportal fibrosis nor with prior treatment for schistosomiasis.  相似文献   

9.
1. We have examined changes in caffeine and trimethadione (TMO) metabolism in vivo, agents which are used as probe drugs. In this study the total body clearance (Cl) of caffeine and TMO was low 1 week after birth (week 1), increased rapidly from week 3, peaked and then decreased gradually until reaching the level for the mature, adult dog. The elimination half-life (t1/2) of caffeine and TMO was prolonged during week 1; however, it then gradually became shorter. Gradually it became longer and reached the level for the adult dog. The apparent volume of distribution (Vd) of caffeine did not change throughout the study. However, the Vd of TMO was only high during week 1. 2. The in vitro changes in a variety of typical substrates for seven different cytochrome P450 (CYP) isozymes were examined. In this study three different patterns of metabolism can be identified: (1) activity is low immediately after birth, increases, peaks and then decreases to the adult dog level (p-nitroanisole; CYP1A1, caffeine; CYP1A2, benzphetamine; CYP3A/2B(?), aniline; 2E1 and TMO; CYP2C9/2E1/3A4); (2) activity generally increases rapidly soon after birth, continues to increase, peaks and then gradually decreases to the adult level (phenytoin; CYP2C9); and (3) activity is high (about the same level as the adult) immediately after birth, decreases and then gradually increases to the adult level (erythromycin; CYP3A4/5). 3. The results of these in vivo and in vitro studies suggest that changes in enzyme activity are due to differences in P450 isoenzymes during development.  相似文献   

10.
Bone morphogenetic protein (BMP) and associated noncollagenous proteins (NCP) were isolated from human osteosarcoma tissue. Implantation of 5- and 10-mg samples induced heterotopic ossification in the mouse quadriceps. Osteosarcoma-derived BMP/NCP induced the same process of osteogenesis as human BMP/NCP isolated from bone matrix in vivo. In vitro continuous perfusion of neonatal rat muscle tissue with 5 micrograms/ml osteosarcoma-derived BMP/NCP increased glycosaminoglycan (GAG) synthesis significantly whereas DNA synthesis was relatively unchanged. Similar results were found when muscle tissue was preincubated with 200 micrograms of osteosarcoma-derived BMP/NCP for four hours followed by an incubation period of 14 days in BMP-free medium: GAG synthesis increased significantly, whereas DNA synthesis did not change. The increase in GAG synthesis coincided with cell differentiation but not cell proliferation. Histologic findings confirmed chondrogenesis in vitro. Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that osteosarcoma-derived BMP/NCP included a prominent component with a molecular weight of 18,000 d.  相似文献   

11.
Neu differentiation factor (NDF, also called neuregulin) is a potent inducer of epithelial cell proliferation and has been shown to induce mammary carcinomas in transgenic mice. Notwithstanding this proliferative effect, we have shown that a novel isoform of NDF can induce apoptosis when overexpressed. Here we report that this property also extends to other NDF isoforms and that the cytoplasmic portion of NDF is largely responsible for the apoptotic effect, whereas the proliferative activity is likely to depend upon the secreted version of NDF. In accordance with these contradictory properties, we find that tumors induced by NDF display extensive apoptosis in vivo. NDF is therefore an oncogene whose deregulation can induce transformation as well as apoptosis.  相似文献   

12.
In the isolated CNS of Lymnaea, a peptidergic neuron termed VD4 makes monosynaptic connections with identified pedal A cluster neurons. In this study, the pedal A (PeA) neurons were further divided into two subgroups depending upon whether they received an inhibitory or excitatory input from VD4. PeA cells inhibited by VD4 were designated PeA(I), whereas those excited by VD4 were termed PeA(E). Both inhibitory and excitatory effects of VD4 stimulation on the PeA(I) and PeA(E) cells, respectively, were mimicked by exogenous FMRFamide in culture (in vitro), implicating this or a related peptide as the transmitter utilized at the VD4-to-PeA synapses. We tested the ability of the general anesthetic, halothane, to affect either the inhibitory or the excitatory peptidergic synapses between VD4 and the PeA neurons, both in the isolated CNS (in vivo) and at the in vitro reconstructed synapses. In the presence of 1% halothane, the excitatory synaptic potential between VD4 and the PeA(E) cells was either depressed or completely abolished, whereas the inhibitory synaptic potential between VD4 and the PeA(I) cells was unaffected in the presence of 1% halothane. The inhibitory potential between VD4 and the PeA(I) cells was, however, blocked in 2% halothane. In order to determine halothane' 5 site of action, exogenous FMRFamide was applied to both PeA(E) and PeA(I) cells in the presence of 1 or 2% halothane. In 1% halothane, the excitatory responses produced by FMRFamide were substantially reduced or abolished, whereas the inhibitory responses to FMRFamide were maintained and enhanced in duration in 1% halothane. In 2% halothane, the inhibitory responses to exogenous FMRFamide remained unchanged. It, therefore, appears that halothane exerts effects at both the pre- and postsynaptic level of the synapse, although presynaptic transmitter release is probably not substantially affected until a concentration of 2% halothane is reached. Our data provide the first evidence that clinically relevant concentrations of halothane (1-2%) affect both excitatory and inhibitory peptidergic synaptic transmission between identified neurons in the nervous system. Furthermore, excitatory transmission is abolished at lower anesthetic concentrations than inhibitory transmission.  相似文献   

13.
Both human and murine osteoclasts can be derived in vitro from hematopoietic cells or monocytes that are co-cultured with osteoblasts or marrow-derived stromal cells. The osteoclastogenic stimulus provided by murine osteoblasts and marrow-derived stromal cells is now known to be mediated by osteoclast differentiation factor (ODF), a membrane-bound tumor necrosis factor-related ligand. This study demonstrates that mouse spleen cells and monocytes form osteoclasts when cultured in the presence of macrophage-colony stimulating factor (M-CSF) and a soluble form of murine ODF (sODF). Numerous multinucleated osteoclasts expressing tartrate resistant acid phosphatase (TRAP) and calcitonin receptor (CTR) formed within 7 days of culture and engaged in extensive lacunar bone resorption. Osteoclast number and bone resorption area was dependent on sODF concentration. Long-term cultured human monocytes also formed bone resorbing osteoclasts in response to co-stimulation by sODF and M-CSF, although this required more than 11 days in culture. This human osteoclast differentiation was strongly inhibited by granulocyte-macrophage colony stimulating factor. This study further characterises murine osteoclast differentiation caused by sODF and M-CSF co-stimulation in vitro, and shows that the same co-stimulation causes human osteoclast differentiation to occur. We propose that this methodology can be employed to investigate the direct effects of cytokines and other factors on human osteoclast differentiation.  相似文献   

14.
Complexes composed of peptide ligand for the serpin enzyme complex receptor covalently coupled to poly-L-lysine condensed by charge interaction with plasmid DNA direct gene transfer into receptor bearing cells. We compared intensity and duration of reporter gene expression in vitro and in vivo from serpin-enzyme receptor-directed gene transfer complexes prepared with poly-L-lysine of different chain lengths. When substituted with linker and ligand to comparable extents, DNA complexes containing short chain poly-L-lysine were larger and gave higher peak expression but significantly shorter duration of expression than those containing long chain poly-L-lysine. Both peak expression and duration of expression exceeded that observed with Lipofectin. Neither naked DNA nor DNA complexed with unsubstituted polylysine was effective in gene transfer. For in vivo experiments, complexes containing optimal ligand and degree of substitution (based on in vitro data, peptide C105Y, 11 ligands/plasmid DNA molecule) were prepared with either short chain or long chain polylysine and a beta-galactosidase expression plasmid. Following injection into the tail veins of mice, longer chain complexes gave significantly higher expression of reporter gene in lung and spleen that lasted for a significantly longer period of time than the shorter chain complexes. The short chain poly-L-lysine-DNA complexes were larger in diameter, as assessed by electron microscopy or atomic force microscopy, and gave less protection against DNase digestion in vitro than longer chain complexes. Thus, for gene transfer complexes directed at the serpin enzyme complex receptor, longer chain poly-L-lysine gave a much longer duration of expression both in vitro and in vivo. We speculate that this may be due to protection against degradation afforded the plasmid DNA by the tighter compaction produced by long chain poly-L-lysine.  相似文献   

15.
We have investigated the relationship between ATP levels and the onset and progression of cell injury induced by paracetamol overdose both in vivo and in vitro. Liver slices obtained from phenobarbitone-induced and non-induced rats were used in a model in vitro system. Slices were exposed to paracetamol (2-10 mM), for 120 min and then incubated without paracetamol for a further 240 min. ATP levels are reduced upon exposure to paracetamol in liver slices from both phenobarbitone-induced and non-induced rats. Cell injury, as quantified by measuring leakage of lactate dehydrogenase (LDH) and potassium (K+), does not become apparent until 240 min, some 120 min after exposure to paracetamol had ended. This irreversible cell injury is not observed in liver slices from non-induced rats. For in vivo studies rats were phenobarbitone-induced and received i.p. injections of 800 mg/kg body weight paracetamol. Hepatic ATP levels were measured and are found to drop sharply by 3 h post-injection. Development of irreversible hepatic cell injury was assessed by measuring serum enzyme (ALT) activity. ALT levels do not rise until 12 h have elapsed. Paracetamol in overdose gives rise to ATP depletion in liver cells, that is early, independent of paracetamol metabolism and probably spread throughout the lobule. In contrast cell injury is found late and only in our phenobarbitone-induced rats. No cell injury is observed in liver slices from non-induced rats. This suggests that while the level of ATP depletion which is observed may be a necessary part of cell injury by paracetamol, it is not a sufficient cause.  相似文献   

16.
Embryonic stem (ES) cells are resistant to transforming growth factor beta (TGF beta). We have shown previously that they lack type-II binding receptors (T beta RII) and in this respect resemble the inner cell mass and ectoderm cells of mouse embryos 4.5-7.5 days post coitum (dpc); they do however express type-I (alk-5) signalling receptors. Here we show that in contrast to several tumour cell lines, stable transfection of wtT beta RII is not sufficient for ES cells to become biologically sensitive to TGF beta. We analysed the expression of several down-stream molecules known to be involved in TGF beta signalling (Smads) and TGF beta-mediated cell cycle regulation (cyclins D) during the differentiation of control and wtT beta RII-expressing ES cells and showed that upregulation of these molecules correlated with (i) an increase in plasminogen activator inhibitor-1 (PAI-1) synthesis and (ii) growth inhibition, following addition of TGF beta 1. These TGF beta responses were reduced in an ES cell line expressing a dominant negative (truncated) T beta RII (delta T beta RII). The differentiation pattern of control and wtT beta RII-expressing ES cells was indistinguishable in monolayer culture and as embryoid bodies, but in delta T beta RII ES cells, the capacity to form mesodermal derivatives in monolayer cultures in response to the addition of retinoic acid (RA) and removal of leukemia inhibitory factor (LIF) was lost, and only endoderm-like cells formed. The T beta RII and delta T beta RII ES cells were, however, both distinguishable from control ES cells when allowed to differentiate in chimaeric embryos following aggregation with morula-stage hosts. Conceptuses containing mutant cells, recovered from pseudopregnant females at the equivalent of 9.5 dpc, exhibited highly defective yolk sac development; most strikingly, no blood vessels were present and in addition the yolk sacs with derivatives of ES cells containing wtT beta RII were blistered and lacked haematopoietic cells. The implications for understanding TGF beta signalling in early mouse development are discussed.  相似文献   

17.
In contrast to conventional view that glucose is the sole glycating agent, ascorbate has now emerged as a potential precursor of advanced glycation products in lenses during cataractogenesis, owing to the high concentration present in human lens. The effects of high hexose environment in vitro and in vivo on the disruption of redox equilibrium of ascorbate (ASA) to dehydroascorbate (DHA), which is required for ascorbate-mediated crystallin modification by the Maillard reaction during cataractogenesis were examined. Organ culture experiments were performed with rat lenses that were first exposed to high galactose levels in vitro and in vivo and then incubated with 1-14C-labeled ASA, DHA or DKG (2,3-diketogulonic acid). Formation of ASA degradation products as a function of time was assessed by radiometric TLC method. Upon incubation with ASA or DHA, an elevated level of the degradation product, DKG, was detected in lenses exposed to galactose in vivo and in vitro. ASA uptake was significantly enhanced in the galactosemic lenses as compared to controls (P = 0.01). Regeneration of ASA from DHA in both galactose treated and galactosemic lenses was impaired when compared to control lens which completely converted DHA from the medium into ASA. Surprisingly, the galactose exposed lenses showed enhanced permeability to DKG which was picked up readily from the medium in contrast to normal healthy lenses which remained impermeable to DKG. Galactose exposed lenses both in vitro and in vivo showed a 5-9-fold increase in crystallin bound Schiff base-linked radioactivity when incubated with 1-14C-labeled ASA or DHA. As a preamble to the question of whether lens pigmentation predisposes towards ascorbate oxidation, lens homogenate from normal young and old pigmented cataractous lenses were incubated with [1-14C]ASA. After 2 days, ASA levels were found to have decreased by 74% and DKG levels increased by 48% in brunescent lens as compared to the young lens. These data demonstrated that profound abnormalities in ASA metabolism exist in lenses exposed to a high sugar environment suggestive of a breakdown of the redox equilibrium of ASA to DHA and a loss of membrane permeability barrier for DKG. The latter would further contribute toward a ASA-catalysed Maillard reaction in the redox impaired lens.  相似文献   

18.
19.
Clonal lines of embryonal carcinoma cells have been established in culture from four independently-derived transplantable teratocarcinomas of mice: three from strain C3H and one from strain 129/Sv. Cells from all lines retain the capacity to differentiate into a variety of tissue types both in tumors formed following the injection of cells into syngeneic animals and in vitro under appropriate culture conditions. Analysis of their G-banded chromosomes indicated that the four lines have near-diploid but not absolutely normal karyotypes. The same chromosomal abnormalities were often present in more than one line. Tetraploid embryonal carcinoma cells made by Colcemid or cytochalasin B treatment were also pluripotential in spite of chromosomal instability. Hybrid cells were readily obtained between diploid or tetraploid embryonal carcinoma cells and mouse 3T3 fibroblasts. Hybrid cells failed to differentiate and were contact inhibited like the 3T3 parent.  相似文献   

20.
Septic shock induced by lipopolysaccharide (LPS) triggering of cytokine production from monocytes/macrophages is a major cause of morbidity and mortality. The major monocyte/macrophage LPS receptor is the glycosylphosphatidylinositol (GPI)-anchored glycoprotein CD14. Here we demonstrate that CD14 coimmunoprecipitates with Gi/Go heterotrimeric G proteins. Furthermore, we demonstrate that heterotrimeric G proteins specifically regulate CD14-mediated, LPS-induced mitogen-activated protein kinase (MAPK) activation and cytokine production in normal human monocytes and cultured cells. We report here that a G protein binding peptide protects rats from LPS-induced mortality, suggesting a functional linkage between a GPI-anchored receptor and the intracellular signaling molecules with which it is physically associated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号