首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultrastructure of the hippocampal mossy fibre layer was studied in ultrathin sections and freeze-fracture preparations of rabbits under deep Nembutal anaesthesia, after recovery from ether anaesthesia, and 40 min after a single injection of methoxypyridoxine, that is, during the second generalized seizure discharge. The giant mossy fibre boutons contain two types of vesicles: evenly distributed, small round clear vesicles (50 nm) and a few scattered large dense-core vesicles (100 nm). In rare instances fusion of dense-core vesicles with the presynaptic membrane was observed. No differences in the morphology of the mossy fibre synapses were found between anaesthetized and unanaesthetized animals. During epileptiform seizures, however, the size and shape of clear and dense-core vesicles varied greatly. The active synaptic zones were covered with large, core-containing omega profiles or bumps and indentations. Only dense-core vesicles seem to undergo exocytosis. A fusion of clear vesicles with presynaptic membrane was not observed. Various explanations for the fact that only dense-core vesicles seem to undergo exocytosis are discussed. The hypothesis is put forward that in the mossy fibre bouton two morphologically and functionally distinct populations of synaptic vesicles exist and that only one of them undergoes visible irreversible exocytosis, whereas the majority, that is, the small vesicles discharge their transmitter by reversible fusion. After MP injection features of membrane retrieval were also prominent. Frequently, at the borders of the active synaptic zones coated membrane convolutes of both pre- and postsynaptic membranes had invaded the terminals as well as the postsynaptic spine. Thus, in contrast to electrical stimulation, the self-sustained seizures allows energy-expensive processes such as extensive membrane internalization to take place during the interictal pauses.  相似文献   

2.
The pharyngeal retractor muscle of Helix lucorum is innervated by two symmetrical nerves which contain axons of two types forming myoneural junctions with the muscle cells. Type I junctions correspond to thick axons. These axon terminals which contain a large number of spherical, clear vesicles (41 +/- 5 nm) and a smaller number of dense-cored vesicles (67 +/- 3 nm) make contacts mainly with noncontractile sarcoplasmic processes of muscle cells. Type II junctions correspond to thin axons containing many of granules. Their axon terminals contact with contractile parts of muscle cells and contain a heterogenous population of vesicles: small spherical clear vesicles (44 +/- 2 nm), dense-cored vesicles and numerous irregularly outlined granules with fine-granular content (135 +/- 5 nm). Space between muscle cell is usually wide (50 nm and more) with the exception of sarcoplasmic processes where the gap may be less than 10 nm.  相似文献   

3.
The innervation of the knee joint synovial membrane of the guinea pig, i.e., the synoviocyte layer, the subjacent connective tissue and the connective tissue region beneath, was analyzed with immunohistofluorescence and electron microscopy. A screening of the innervation with antibodies against the general axon marker -- protein gene product (PGP) 9,5 -- revealed the presence of nerve fibers distributed in various regions of the knee joint synovial membrane. Confirming previous studies, some of these nerve fibers stained with antibodies to tyrosine hydroxylase (TH), neuropeptide Y (NPY), substance P (SP), calcitonin gene-related peptide (CGRP), and vasoactive intestinal polypeptide (VIP). In addition, dynorphin (DYN)-containing fibers were detected, which have not been reported previously in normal joints. In general, the immunoreactive fibers were observed close to the synoviocytes and at blood vessels. Fibers with colocalization of NPY- and TH-like immunoreactivities (LIs), as well as of DYN- and TH-LIs were demonstrated. In the electron microscope, bundles of unmyelinated fibers as well as single fibers were found in the connective tissue region below the synoviocytes. Varicose parts of the nerve fibers contained mainly small, clear vesicles. Small and large dense-cored vesicles were also seen, but less frequently. Denser portions of the plasma membranes of some axons were observed in these regions, facing the extracellular space. Myelinated fibers were also observed in some nerve bundles. These findings emphasize the complex innervation of the synovial membrane, with nerve fibers containing a host of neuroactive substances. Altogether, these fibers are probably involved in many functions such as vasoregulation and control of synovial secretion in addition to being a source of mediators in joint inflammation.  相似文献   

4.
Golgi and electron microscopic observations were made on the neurons in the deep layers (below the stratum opticum) of the cat superior colliculus. Large neurons, 35-60 micrometers in somal diameter, occur mainly in the lateral two-thirds of the colliculus. They have numerous somatic and dendritic spines and receive a large number of axon terminals (bouton covering ratio: more than 70%). The medium-sized neurons (20-30 micrometer), with a moderate number of dendritic spines, show a lower bouton covering ratio (25-30%). The ratio for small neurons (8-15 micrometers), with very few dendritic spines, is less than 10%. The medium-sized and small neurons are distributed throughout the colliculus and show marked variability in the dendritic arrangement. Seven different types of axon terminals were distinguished: types I, II, V, and VII form asymmetrical and types III, IV, and VI symmetrical synapses. Type I terminals represent small boutons containing predominantly spherical vesicles, and are in contact mainly with small dendritic profiles. Type II terminals are medium-sized and slender, contain a mixture of spherical and slightly oval vesicles, and make synaptic contacts with small to medium-sized dendrites and somatic spines. This type of terminal is occasionally presynaptic to vesicle-containing dendrites (type VIII). Type III terminals are small, contain flattened vesicles predominantly, and are presynaptic to a wide variety of neuronal elements in the deep layers of the superior colliculus. Type IV terminals are represented by medium to large-sized boutons that contain pleomorphic vesicles and make synaptic contacts chiefly with the large neurons. Type V and VI terminals exhibit a quite dense axoplasmic matrix and mainly contact the large neurons. Type VII terminals are often in the form of boutons en passant and contain numerous large granular vesicles. Pleomorphic vesicle-containing dendrites (type VIII terminals) are also observed to participate in the axodendrodendritic serial synapses.  相似文献   

5.
The nerve endings in the carotid body of normal cats are investigated by means of serial sections. Two types of endings not described previously are especially studied: the non-synaptic bouton and the meniscus with prolongations. The first is a small nerve ending with abundant mitochondria and glycogen which is devoid of synaptic vesicles. The second is a normal meniscus which presents prolongations containing the same cytological elements of the nonsynaptic boutons. It is proposed that some menisci are lateral endings of an afferent fiber. Relating these results with well-known functional characteristics of the carotid body, the existence of axonal reflexes is suggested. These views can explain apparently contradictory facts.  相似文献   

6.
The ultrastructure of autonomic nerve fibers and terminal varicosities is described in relation to the lamina propria of the human seminiferous tubules during childhood (age 3 to 10 years). Autonomic nerve varicosities are classified as: Type I with numerous small (30-60 nm) agranular vesicles and variable numbers of large (100 nm) granular vesicles, and Type II with numerous small (30-60 nm) granular vesicles and sporadic large granular vesicles. These two varicosity types are consistent in morphology with cholinergic and adrenergic nerve terminals, respectively. Nerve varicosities are found, associated with Schwann cells, in proximity to the cells of the lamina propria. Although not found in direct "synaptic' contact, these autonomic endings are often within a few hundred nanometers of the cellularity of the lamina propria. The Schwannian sheath is interrupted over the varicosities at these sites and occasionally the terminal varicosities are totally lacking a Schwann sheath. These findings are consistent with the structural relationship of autonomic nerve "terminals' and effector in other endocrine and non-endocrine systems. This is the first evidence of adrenergic nerve varicosities in proximity to the lamina propria in humans (at any age). Evidence is also presented which suggests a locational difference in the distribution of cholinergic (Type I) and adrenergic (Type II) nerve varicosities in this region, with only cholinergic endings observed directly adjacent to the basal lamina of the seminiferous tubules.  相似文献   

7.
Synapses of optic afferents (optic synapses) in the suprachiasmatic nucleus of hooded rats were morphometrically evaluated after exposing the animals to 12 h, 14 days, 2 months, and 8 months of constant light (light rats) and darkness (dark rats). Compared with dark rats, optic synapses from light rats have larger boutons with larger mitochondria, more clear vesicles, fewer dense-core vesicles and front-line vesicles, smaller presynaptic dense projections, a smaller amount of postsynaptic density material, a smaller relative number of Gray-type I (asymmetric) junctions, a greater relative number of Gray-type II (symmetric) junctions, as well as more and larger mitochondria in the postsynaptic dendrites. Junctions of optic synapses are mostly straight, but the small number of positively curved contacts are more flattened in light rats than in dark rats. An age-related increase in the size of presynaptic dense projections was also observed. There are no changes in the sizes of clear and dense-core vesicles, in the size of synaptic junctions and their numerical density in area, and in the unspecific contact area between pre- and postsynaptic elements. The changes in optic boutons are characteristic for activated and relatively disused synapses with a slow, tonic firing rate. It appears that (1) the amount of postsynaptic density material is proportional to the strength of Gray-type I synapses, and that (2) some excitatory optic synapses become inhibitory after long-term activity, whereas some inhibitory synapses turn into excitatory contacts after long-term disuse.  相似文献   

8.
The structure of the nervous network and the distribution of tyrosine hydroxylase (TH)- and various neuropeptide-containing nerves were immunohistochemically studied in the glottis of the dog. The nervous network in the glottis revealed apparent regional differences in morphology. The nervous network in the cartilaginous vocal fold of the posterior glottis consisted of nerve bundles running parallel to the edge of the vocal fold. Only a small number of nerve bundles were observed in the anterior glottis, specifically in membranous vocal fold. In the subepithelial layer of the posterior glottis, a moderate number of galanin (GAL)-immunoreactive nerve fibers were observed, while only a few fibers were present in the anterior glottis. Numerous vasoactive intestinal peptide (VIP)-, GAL-, methionine-enkephalin (ENK)- and TH-immunoreactive nerve fibers were observed within and around the laryngeal submucosal seromucous gland. Many TH- and neuropeptide Y (NPY)-immunoreactive fibers were arranged around the blood vessels. In the epithelia, free nerve endings with immunoreactivity for substance P (SP) and calcitonin gene-related peptide (CGRP) was observed. Furthermore, nerve cell bodies with SP-, VIP-, GAL-, ENK-, and NPY-immunoreactivity were observed in the deep region of the submucosal layer. The results from the present study suggest that there is autonomic regulation of the glottis. Regional structural differences in the nervous network of the glottis may reflect functional differences.  相似文献   

9.
Because the ultrastructure of the trigeminal sensory nerves in dentin, especially in relation to odontoblasts, remains to be clarified, we investigated the relationship between the trigeminal sensory nerves and the odontoblast processes using the anterograde axonal transport technique by injecting wheat germ agglutinin-horseradish peroxidase (WGA-HRP) into the rat trigeminal ganglion. Light microscopically, the nerves labeled with WGA-HRP were mainly concentrated at the pulpal horn, forming a nerve plexus at the subodontoblastic region and penetrating the predentin/dentin about 50 to 70 microns. Ultrastructurally, HRP reaction products were observed intra-axonally in the myelinated (A delta) and unmyelinated (C) axons in the subodontoblastic region. Most nerves lost the Schwann sheath and were naked in the predentin/dentin. The labeled varicosities were close to the odontoblast processes in the dentinal tubules. No synaptic structures could be detected between the varicosities and the odontoblasts, but a gap about 20 nm wide was found between them. One type of varicosity was a rich mitochondria-containing varicosity, while the other was a rich vesicle-containing (large dense core vesicles and small clear vesicles) one. The reaction products were also found in the extracellular spaces surrounding the axons. Sometimes the reaction products were seen in the coated pits or the endocytotic vesicles of the odontoblast processes. The present study demonstrated that nerve endings (varicosities) derived from the trigeminal ganglion were present in the dentinal tubules, and that WGA-HRP extracellularly extruded from the sensory nerves in the odontoblastic layer or predentin/dentin. These findings thus suggest that sensory nerves may have some (e.g., trophic) effect on either odontoblasts or the environment around the sensory nerves in the dentin/pulp.  相似文献   

10.
Light and electron microscopic studies have been made of a special type of small granule-containing cell (termed Type IV cell) in the frog abdominal para aortic region. These cells contain numerous dense granular vesicles (100--150 nm in diameter) and are considerably smaller (10--20 mu) than neighbouring nerve cells, although they have many features in common with them. They do not resemble chromaffin cells as do Types I, II and III cells. The cell bodies are completely ensheathed by satellite cells and are isolated from neighbouring cells of the same type. Type IV cells have long processes which usually become incorporated in bundles containing 2--20 processes, including some cholinergic nerve fibres, and are loosely enveloped by perineurium. The termination of the processes of Type IV cells do not appear to form efferent synapses on nerve cells at least within the para aortic region or in paravertebral sympathetic ganglia. A close topographical relationship is not found between these processes and blood vessels. It is suggested that the small Type IV granule-containing cells in the frog abdominal para aortic region are not interneurons or neurosecretory cells, but are a special type of sympathetic nerve cell.  相似文献   

11.
Exploration of the mechanisms and plasticity of synaptic transmission has been hindered by the lack of a method to measure single vesicle turnover directly in individual presynaptic boutons at isolated nerve terminals. Although postsynaptic electrical recordings have provided a wealth of invaluable basic information about quantal presynaptic processes, this approach has often proved difficult to apply at most central nervous system synapses. Here we describe the direct optical detection of single quantal events in individual presynaptic boutons of cultured hippocampal neurons. Using the fluorescent dye FM 1-43 as a tracer for presynaptic endocytosis, we have characterized both evoked and spontaneous components of presynaptic function at the level of individual quanta. Our results are consistent with quantal interpretations of previous electrophysiological analyses and provide new information about the unitary membrane recycling event and its coupling to individual action potential stimuli, about spontaneous vesicle turnover at individual boutons, and about the numbers of vesicles recycling at individual boutons.  相似文献   

12.
The ultrastructure of [leu]5-enkephalin-immunoreactive (ENK-IR) nerve fibres in the guinea-pig stellate ganglion was studied by means of pre-embedding immunohistochemistry. ENK-immunoreactivity was primarily contained within large dense core vesicles (91 +/- 21 nm in diameter; n = 259) but was absent from small clear vesicles (47 +/- 9 nm; n = 488) within the same nerve terminal that were concentrated at presynaptic regions. Thus, fast synaptic transmission mediated by ENK-IR terminals most probably does not involve [leu]5-enkephalin which may be released parasynaptically. Evaluating a total number of 123 synapses involving an ENK-IR presynaptic nerve ending, 47% terminated upon a spine, 46% upon a dendritic shaft, and 7% directly addressed a soma of a postganglionic neuron. In 30% of axo-dendritic synapses and 33% of axo-somatic synapses, non-immunoreactive dendrites or somata being postsynaptic to an ENK-IR terminal were in direct but non-synaptic contact to another dendrite/soma. Such arrangements are termed "triads". In view of the current hypotheses concerning the function of spines and triads, these findings indicate that ENK-IR terminals within the guinea-pig stellate ganglion may be involved in the generation of long-lasting synaptic events and modulation of non-synaptic intraganglionic communication.  相似文献   

13.
Previous work suggests that slowly adapting (SA) periodontal afferents have different synaptic arrangements in the principal (Vp) and oral trigeminal nuclei and that the synaptic structure associated with transmitter release may be related directly to bouton size. The present study examined the ultrastructures of SA and fast adapting (FA) vibrissa afferents and their associated unlabeled axonal endings in the cat Vp by using intra-axonal labeling with horseradish peroxidase and a morphometric analysis. All SA and FA afferent boutons contained clear, round, synaptic vesicles. All the FA and most SA boutons were presynaptic to dendrites, but a few SA boutons were axosomatic. Both types of bouton were frequently postsynaptic to unlabeled axonal ending(s) containing pleomorphic, synaptic vesicles (P-ending). The size of labeled boutons was larger in FA than SA afferents, but the size of dendrites postsynaptic to labeled boutons was larger for SA than FA afferents. Large-sized FA and SA boutons made synaptic contacts with small-diameter dendrites. The size of FA and SA boutons was larger than that of their associated P-endings. A morphometric analysis made on the pooled data of SA and FA boutons indicated that apposed surface area, active zone number, total active zone area, vesicle number, and mitochondrial volume were highly correlated in a positive linear manner with labeled bouton volume. These relationships were also applicable to unlabeled P-endings, but the range of each parameter was smaller than that of the labeled boutons. These observations provide evidence that the two functionally distinct types of vibrissa afferent manifest unique differences but share certain structural features in the synaptic organization and that the ultrastructural "size principle" proposed by Pierce and Mendell ([1993] J. Neurosci. 13:4748-4763) for Ia-motoneuron synapses is applicable to the somatosensory system.  相似文献   

14.
Immunoreactivities (IR) of substance P and leucine enkephalin have been demonstrated in the guinea-pig paracervical ganglion by an immunogold electron microscope method. Both substance P-IR and leucine enkephalin-IR were detected in large synaptic vesicles with electron-dense cores. The former neuropeptide was detected in nerve terminals and varicosities comprised mainly of large vesicles with electron-dense cores; the latter was detected in nerve terminals and varicosities that also included small, clear synaptic vesicles. In a minority of nerve terminals and varicosities coexistence of both immunoreactivities could be demonstrated within vesicles with an electron-dense core. Also present in these nerve terminals and varicosities were small, clear synaptic vesicles, though these were unreactive.  相似文献   

15.
Ventral anterior thalamic nucleus pars densicellularis (VAdc) as delineated earlier (Ilinsky and Kultas-Ilinsky [1987] J. Comp. Neurol. 262:331-364) was analyzed by using qualitative and quantitative neuroanatomical techniques. Projection neurons (PN), retrogradely labeled with wheat germ agglutinin conjugated horseradish peroxidase from the cortex, were small to medium in size (mean area, 312 microm2) with numerous primary dendrites displaying a tufted branching pattern. Local circuit neurons (LCN), immunoreactive for gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase, were small (mean area, 110 microm2), and gave off few dendrites. Two subpopulations of GABA positive boutons (F1 type) were distinguished: large (mean area, 2.6 microm2) terminals with symmetric synapses containing few pleomorphic vesicles and numerous mitochondria densely covered proximal PN sites; smaller F1 boutons with a slightly different morphology contacted mostly distal PN dendrites. Two subpopulations of terminals containing round vesicles and forming asymmetric synapses were distinguished by bouton size (mean areas, 0.4 microm2 and 1.6 microm2, respectively). These targeted mainly distal PN dendrites, but some synapsed proximally next to large F1 boutons. On distal dendrites, representatives of both types were labeled from the cortex. The density of boutons with symmetric and asymmetric synapses (the number of boutons per 100 microm of PN membrane length) was 3.3:0.2 on primary, 2.5:1.2 on secondary, and 0.8:12 on distal dendrites. The numerical density of synapses formed by presynaptic LCN dendrites on all PN levels was 20 to 40 times less than that of axon terminals at the same sites. Afferent input to LCN from boutons of all types, including that from 50% of labeled cortical boutons, mainly targeted distal dendrites. Overall, the findings suggest that PN in VAdc receive massive inhibitory input proximally intermingled with some presumably excitatory input, and that LCN contribution to PN inhibition is modest.  相似文献   

16.
The distribution of glycine- and gamma-aminobutyric acid (GABA)-like immunoreactivity (LI) in nerve terminals on the cell soma of motoneurons in the aldehyde-fixed cat L7 spinal cord was examined using postembedding immunogold histochemistry in serial ultrathin sections. Quantitative examination of 405 terminals on eight neurons of alpha-motoneuron size in the L7 motor nuclei from one animal was performed. A majority of the terminals (69%) were immunoreactive to glycine and/or GABA. These terminals contained flat or oval synaptic vesicles, thus classifying them as F type or as C type in one case. In no case was a type-F terminal unlabeled for both glycine and GABA. Most of the immunolabeled terminals were immunoreactive to glycine only (62.5%), whereas 35.4% contained both glycine- and GABA-LI. A very small number of immunolabeled terminals (2%) were immunoreactive to GABA only. In those terminals, where glycine- and GABA-LI coexisted, the gold particle density for each amino acid was only half of that seen in boutons containing only one of the two amino acids. The involvement of glycine and GABA in postsynaptic inhibition of spinal alpha-motoneurons is discussed, with particular reference to the possibility that these two inhibitory amino acids may be coreleased from a significant proportion of the nerve terminals impinging on the cell bodies.  相似文献   

17.
The ultrastructure and distribution of dopaminergic boutons within the rat mesencephalic trigeminal (Me5) nucleus was examined with the use of electronmicroscopic immunocytochemistry. A total of 5102 boutons, comprising axosomatic and axodendritic synaptic terminals as well as non-synaptic boutons (or varicosities), located in the ventrocaudal portion of Me5 was analysed. Approximately 20% of these boutons were dopamine-immunoreactive. Morphological analysis showed that the dopaminergic synaptic terminals, axodendritic as well as axosomatic, were exclusively of the S- and G-bouton type; they contained, respectively, small spherical vesicles or small pleomorphic vesicles in combination with large granular dense-cored vesicles. All dopaminergic varicosities in the Me5 were of the G-bouton type. Quantitative analysis revealed that most of the dopaminergic synaptic terminals in the Me5 nucleus contacted dendrites, while only a minority (12%) contacted Me5 somata. This dopaminergic somatic input comprised about half (52%) of the total axosomatic input on Me5 neurons. The present results and previous findings with respect to the prominent serotonergic component of the axosomatic input to Me5 neurons indicate that dopamine and serotonin account for most of the axosomatic input in the ventrocaudal part of the Me5 nucleus. In fact, the present results seem to support previous observations regarding the existence of a population of afferent neurons in which dopamine and serotonin are colocalized.  相似文献   

18.
The toxic lectin ricin was applied to the hamster chorda tympani (CT), producing anterograde degeneration of its terminal boutons within the gustatory zone of the nucleus of the solitary tract (NST). Immunocytochemistry was subsequently performed with antiserum against tyrosine hydroxylase (TH), and the synaptic relationships between degenerating CT terminal boutons and either TH-immunoreactive or unlabeled dendritic processes were examined at the electron microscopic level. Degenerating CT terminal boutons formed asymmetric axodendritic synapses and contained small, clear, spherical synaptic vesicles that were densely packed and evenly distributed throughout the ending, with no accumulation at the active synaptic. The degenerating CT terminated on the dendrites of TH-immunoreactive neurons in 36% (35/97) of the cases. The most frequent termination pattern involved the CT and two or three other inputs in synaptic contact with a single immunoreactive dendrite, resulting in a glomerular-like structure that was enclosed by glial processes. In 64% (62/97) of the cases, the degenerating CT was in synaptic contact with unlabeled dendrites, often forming a calyx-like synaptic profile that surrounded much of the perimeter of a single unlabeled dendrite. These results indicate that the TH-immunoreactive neurons of the gustatory NST receive direct input from the CT and taste receptors of the anterior tongue and that the termination patterns of the CT vary with its target neuron in the gustatory NST. The glomerular-like structure that characterizes many of the terminations of the CT provides an opportunity for the convergence of several functionally distinct inputs (both gustatory and somatosensory) onto putative dopaminergic neurons that may shape their responsiveness to the stimulation of the oral cavity.  相似文献   

19.
To study the regenerative capacity of the spinal cord in adult rat, presynaptic boutons were classified as S (spherical vesicles), F (flattened vesicles) and C complexes, and analysed statistically on alpha-motoneuron somata and lamina VII interneurons on the operated side in the first segment rostral to a spinal cord hemisection. Following chloral hydrate anesthesia left spinal cord hemisections were made on twenty adult rats (225 gms) at vertebral level T-2. Animals were prepared for electron microscopy at 7, 14, 30, 45, 60 and 90 DPO and compared with normals. All counts were made on coded material and subjected to statistical analysis. The normal frequency of presynaptic bouton types on alpha-motoneuron somata at 30 DPO. At 45 DPO, massive degeneration with concomitant synaptic remodeling resulted in a return to near normal frequencies of S and F presynaptic boutons. At 60 and 90 DPO a gain in S presynaptic boutons and a concomitant loss in F presynaptic boutons resulted in frequencies different from normal and decreased absolute numbers of presynaptic boutons. The interneuron somata also exhibited alterations over the postoperative period. There was a reversal of frequency of presynaptic boutons at 45 DPO. However unlike on alpha-motoneuron somata the frequency of S and F presynaptic boutons returned to normal at 60 and 90 DPO. The alpha-motoneuron somata appeared to be cyclically and nonselectively reinnervated by ventral horn interneurons over 90 DPO.  相似文献   

20.
The effects of increasing and decreasing activity in sympathetic neurons on light (D420 = 1.05) and heavy (D420 = 1.15) populations of adrenergic vesicles have been determined. Norepinephrine (NE) was used as a marker for the soluble contents of the vesicles, and dopamine beta-hydroxylase was used as a marker for the vesicle membranes. Cold exposure was used to increase activity in the sympathetic nervous system. A 40% decrease in the NE content of the rat heart with no change in the activity of dopamine beta-hydroxylase was observed after 70 minutes at 5 degrees C. The fall in NE content was completely blocked by pretreating the animals with chlorisondamine. Separation of light and heavy populations of vesicles was achieved with linear sucrose density gradients. Cold stress of 70 minutes duration led to a marked decrease in the NE content of the light vesicles. Blocking adrenergic nerve impulses with chlorisondamine resulted in an increase in total NE in the heart but had no effect on dopamine beta-hydroxylase activity. The initial effect of chlorisondamine was to increase the NE content of the light vesicles. The administration of alpha-methyl-p-tyrosine for 6 hours caused an approximately equal loss of NE from both vesicle populations. The decrease in total heart NE was about 25% and could be prevented by pretreating the animals with chlorisondamine. These results suggest that the light vesicle fraction is involved in the rapid or short-term responses to changes in nerve impulse frequency. Changes in the NE content of the heavy vesicles in rat heart were seen only after longer times, suggesting that these particles may function only as auxiliary storage sites for the neurotransmitter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号