首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects.  相似文献   

2.
Phase-change materials for rewriteable data storage   总被引:3,自引:0,他引:3  
Phase-change materials are some of the most promising materials for data-storage applications. They are already used in rewriteable optical data storage and offer great potential as an emerging non-volatile electronic memory. This review looks at the unique property combination that characterizes phase-change materials. The crystalline state often shows an octahedral-like atomic arrangement, frequently accompanied by pronounced lattice distortions and huge vacancy concentrations. This can be attributed to the chemical bonding in phase-change alloys, which is promoted by p-orbitals. From this insight, phase-change alloys with desired properties can be designed. This is demonstrated for the optical properties of phase-change alloys, in particular the contrast between the amorphous and crystalline states. The origin of the fast crystallization kinetics is also discussed.  相似文献   

3.
Chalcogenide thin films are used as the recording medium for phase change-type optical memory discs. The films are switched between amorphous and crystalline states using the heat of a focussed laser beam. Large reflectivity differences between amorphous and crystalline states are then used to store and retrieve the information. An active chalcogenide layer for this purpose should have a high optical absorption coefficient (α), and good structural and thermal stability. It should be possible to switch the chalcogenide layer between amorphous and crystalline states repeatedly within a short duration, the optical contrast should be high, and the material must have large cycling capability. Keeping the above requirements in mind, we have carried out systematic investigation of structural, optical and crystallization behaviour of thin films of various compositions of GaGeTe, Sb2Te3 and BiSe. These studies have shown that these materials can be good candidates for use as recording media in erasable phase-change optical recording.  相似文献   

4.
Chalcogenide films with reversible amorphous-crystalline phase transitions have been commercialized as optically rewritable data-storage media, and intensive effort is now focused on integrating them into electrically addressed non-volatile memory devices (phase-change random-access memory or PCRAM). Although optical data storage is accomplished by laser-induced heating of continuous films, electronic memory requires integration of discrete nanoscale phase-change material features with read/write electronics. Currently, phase-change films are most commonly deposited by sputter deposition, and patterned by conventional lithography. Metal chalcogenide films for transistor applications have recently been deposited by a low-temperature, solution-phase route. Here, we extend this methodology to prepare thin films and nanostructures of GeSbSe phase-change materials. We report the ready tuneability of phase-change properties in GeSbSe films through composition variation achieved by combining novel precursors in solution. Rapid, submicrosecond phase switching is observed by laser-pulse annealing. We also demonstrate that prepatterned holes can be filled to fabricate phase-change nanostructures from hundreds down to tens of nanometres in size, offering enhanced flexibility in fabricating PCRAM devices with reduced current requirements.  相似文献   

5.
Design rules for phase-change materials in data storage applications   总被引:1,自引:0,他引:1  
Phase-change materials can rapidly and reversibly be switched between an amorphous and a crystalline phase. Since both phases are characterized by very different optical and electrical properties, these materials can be employed for rewritable optical and electrical data storage. Hence, there are considerable efforts to identify suitable materials, and to optimize them with respect to specific applications. Design rules that can explain why the materials identified so far enable phase-change based devices would hence be very beneficial. This article describes materials that have been successfully employed and dicusses common features regarding both typical structures and bonding mechanisms. It is shown that typical structural motifs and electronic properties can be found in the crystalline state that are indicative for resonant bonding, from which the employed contrast originates. The occurence of resonance is linked to the composition, thus providing a design rule for phase-change materials. This understanding helps to unravel characteristic properties such as electrical and thermal conductivity which are discussed in the subsequent section. Then, turning to the transition kinetics between the phases, the current understanding and modeling of the processes of amorphization and crystallization are discussed. Finally, present approaches for improved high-capacity optical discs and fast non-volatile electrical memories, that hold the potential to succeed present-day's Flash memory, are presented.  相似文献   

6.
The identification of materials suitable for non-volatile phase-change memory applications is driven by the need to find materials with tailored properties for different technological applications and the desire to understand the scientific basis for their unique properties. Here, we report the observation of a distinctive and characteristic feature of phase-change materials. Measurements of the dielectric function in the energy range from 0.025 to 3 eV reveal that the optical dielectric constant is 70-200% larger for the crystalline than the amorphous phases. This difference is attributed to a significant change in bonding between the two phases. The optical dielectric constant of the amorphous phases is that expected of a covalent semiconductor, whereas that of the crystalline phases is strongly enhanced by resonant bonding effects. The quantification of these is enabled by measurements of the electronic polarizability. As this bonding in the crystalline state is a unique fingerprint for phase-change materials, a simple scheme to identify and characterize potential phase-change materials emerges.  相似文献   

7.
Ge-Sb-Te materials are used in optical DVDs and non-volatile electronic memories (phase-change random-access memory). In both, data storage is effected by fast, reversible phase changes between crystalline and amorphous states. Despite much experimental and theoretical effort to understand the phase-change mechanism, the detailed atomistic changes involved are still unknown. Here, we describe for the first time how the entire write/erase cycle for the Ge(2)Sb(2)Te(5) composition can be reproduced using ab initio molecular-dynamics simulations. Deep insight is gained into the phase-change process; very high densities of connected square rings, characteristic of the metastable rocksalt structure, form during melt cooling and are also quenched into the amorphous phase. Their presence strongly facilitates the homogeneous crystal nucleation of Ge(2)Sb(2)Te(5). As this simulation procedure is general, the microscopic insight provided on crystal nucleation should open up new ways to develop superior phase-change memory materials, for example, faster nucleation, different compositions, doping levels and so on.  相似文献   

8.
Phase-change memory technology relies on the electrical and optical properties of certain materials changing substantially when the atomic structure of the material is altered by heating or some other excitation process. For example, switching the composite Ge(2)Sb(2)Te(5) (GST) alloy from its covalently bonded amorphous phase to its resonantly bonded metastable cubic crystalline phase decreases the resistivity by three orders of magnitude, and also increases reflectivity across the visible spectrum. Moreover, phase-change memory based on GST is scalable, and is therefore a candidate to replace Flash memory for non-volatile data storage applications. The energy needed to switch between the two phases depends on the intrinsic properties of the phase-change material and the device architecture; this energy is usually supplied by laser or electrical pulses. The switching energy for GST can be reduced by limiting the movement of the atoms to a single dimension, thus substantially reducing the entropic losses associated with the phase-change process. In particular, aligning the c-axis of a hexagonal Sb(2)Te(3) layer and the 〈111〉 direction of a cubic GeTe layer in a superlattice structure creates a material in which Ge atoms can switch between octahedral sites and lower-coordination sites at the interface of the superlattice layers. Here we demonstrate GeTe/Sb(2)Te(3) interfacial phase-change memory (IPCM) data storage devices with reduced switching energies, improved write-erase cycle lifetimes and faster switching speeds.  相似文献   

9.
Using a two-laser static tester, we measured the crystallization temperature and the thermal conductivity of a phase-change alloy thin film used in write-once-read-many media of optical data storage. The experimental technique, in general, and the calibration procedures, in particular, are described. The measurement results are used as entry points into numerical calculations that ultimately yield estimates of the material parameters. Valuable information about the dynamics of mark formation (i.e., localized crystallization) in amorphous phase-change alloy films is obtained from the observed variations of the sample reflectance under short-pulse and long-pulse recording conditions. The dependence of these reflectance variations on the laser pulse power has also been investigated.  相似文献   

10.
The search for a universal memory storage device that combines rapid read and write speeds, high storage density and non-volatility is driving the exploration of new materials in nanostructured form. Phase-change materials, which can be reversibly switched between amorphous and crystalline states, are promising in this respect, but top-down processing of these materials into nanostructures often damages their useful properties. Self-assembled nanowire-based phase-change material memory devices offer an attractive solution owing to their sub-lithographic sizes and unique geometry, coupled with the facile etch-free processes with which they can be fabricated. Here, we explore the effects of nanoscaling on the memory-storage capability of self-assembled Ge2Sb2Te5 nanowires, an important phase-change material. Our measurements of write-current amplitude, switching speed, endurance and data retention time in these devices show that such nanowires are promising building blocks for non-volatile scalable memory and may represent the ultimate size limit in exploring current-induced phase transition in nanoscale systems.  相似文献   

11.
Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.  相似文献   

12.
每年疫苗产品损耗的主要因素之一是冷链运输的失效,在运输过程中使用最为普遍的设备是蓄冷箱。影响蓄冷箱保温性能的因素主要包括保温箱体的绝热性能、蓄冷材料的蓄冷能力及保温包装方式的设计。本文综述了蓄冷箱在疫苗冷链中的研究进展,分析了疫苗蓄冷箱常用保温材料及相变蓄冷材料的选择和应用,并讨论了箱体热阻的计算及蓄冷箱温度的监控。在此基础上指出整体包装和开发相变蓄冷材料的研究方向。  相似文献   

13.
We describe a method to estimate the heat capacity of the substrate, the dielectric layer, and the phase-change layer of phase-change optical recording media as well as the thermal conductivity of the phase-change layer in its crystalline state. Measurements were carried out on spinning disks with the beam of light focused and locked onto the groove track. The method relies on the identification of the solid-to-liquid phase transition that occurs in the phase-change layer and takes advantage of the dependence of thermal diffusion on track velocity and irradiation time.  相似文献   

14.
The global demand for data storage and processing is increasing exponentially. To deal with this challenge, massive efforts have been devoted to the development of advanced memory and computing technologies. Chalcogenide phase-change materials (PCMs) are currently at the forefront of this endeavor. In this Review, we focus on the mechanisms of the spontaneous structural relaxation – aging – of amorphous PCMs, which causes the well-known resistance drift issue that significantly reduces the device accuracy needed for phase-change memory and computing applications. We review the recent breakthroughs in uncovering the structural origin, achieved through state-of-the-art experiments and ab initio atomistic simulations. Emphasis will be placed on the evolving atomic-level details during the relaxation of the complex amorphous structure. We also highlight emerging strategies to control aging, inspired by the in-depth structural understanding, from both materials science and device engineering standpoints, that offer effective solutions to reduce the resistance drift. In addition, we discuss an important new paradigm – machine learning – and the potential power it brings in interrogating amorphous PCMs as well as other disordered alloy systems. Finally, we present an outlook to comment on future research opportunities in amorphous PCMs, as well as on their reduced aging tendency in other advanced applications such as non-volatile photonics.  相似文献   

15.
We report results of measurements of the optical constants of the dielectric layer (ZnS-SiO2), reflecting layer (aluminum-chromium alloy), and phase-change layer (GeSbTe, AgInSbTe) used as the media of phase-change optical recording. The refractive index n and the absorption coefficient k of these materials vary to some extent with the film thickness and with the film deposition environment. We report the observed variations of optical constants among samples of differing structure and among samples fabricated in different laboratories.  相似文献   

16.
Miao XS  Shi LP  Tan PK  Li JM  Lim KG  Hu X  Chong TC 《Applied optics》2004,43(5):1140-1146
A new method of multispeed rewritable optical recording is presented. An initialization-free phase-change optical disk is proposed as a candidate for multispeed rewritable optical recording. The simulated results of the initialization-free disk at different linear velocities show that the cooling rate increases from approximately 18.69% to 37.96%. A model that combines the crystallization acceleration effect due to the additional layers and the rapid cooling rate due to the initialization-free disk structure is proposed as the physical mechanism of the multispeed recording method with an initialization-free disk. The dynamic optical-recording properties of the initialization-free DVD-RAM disk at different recording speeds shows that the initialization-free phase-change optical-recording disk is compatible with a broad range of recording speeds from 3.49 to 12.21 m/s.  相似文献   

17.
The objective of the study was to investigate the heat transfer characteristics of a phase-change energy storage unit for thermal management. Considering the conduction in the solid and natural convection in the liquid, a physical and mathematical model for heat transfer was formulated. The governing conservation equations were solved using the finite-volume method on fixed grids. An enthalpy-porosity method was used for modeling the melting phenomenon of a phase-change energy storage unit. The time and space movement of the phase front, the temperature distribution, and the heat dissipation rate have been analyzed based on the model. The influence of the unit geometry, heat source location, and types of phase-change materials on the thermal performance of the energy storage unit were investigated. The model and numerical method were evaluated by comparing the numerical predictions with the experimental results. There was found to be excellent agreement between the calculation and experiment, indicating that the numerical method for heat transfer simulation of a phase-change energy storage unit is accurate. The results from the analysis elucidate the thermal performance of the phase-change energy storage unit and will provide the basis for the design and optimization of thermal management systems.  相似文献   

18.
The finite-element method is applied to model phase-change recording in a grooved recording stack. A rigorous model for the scattering of a three-dimensional focused spot by a one-dimensional periodic grating is used to determine the absorbed light in a three-dimensional region inside the phase-change layer. The optical model is combined with a three-dimensional thermal model to compute the temperature distribution. Land and groove recording and polarization dependence are studied, and the model is applied to the Blu-ray Disc.  相似文献   

19.
Phase-change materials are of tremendous technological importance ranging from optical data storage to electronic memories. Despite this interest, many fundamental properties of phase-change materials, such as the role of vacancies, remain poorly understood. 'GeSbTe'-based phase-change materials contain vacancy concentrations around 10% in their metastable crystalline structure. By using density-functional theory, the origin of these vacancies has been clarified and we show that the most stable crystalline phases with rocksalt-like structures are characterized by large vacancy concentrations and local distortions. The ease by which vacancies are formed is explained by the need to annihilate energetically unfavourable antibonding Ge-Te and Sb-Te interactions in the highest occupied bands. Understanding how the interplay between vacancies and local distortions lowers the total energy helps to design novel phase-change materials as evidenced by new experimental data.  相似文献   

20.
We have developed a procedure to obtain the critical temperature for the amorphous-to-crystalline phase transition as well as the thermal conductivity and the specific heat of the phase-change media of optical recording. The procedure involves estimating the thermal conductivity from the data obtained by measuring the threshold cw laser power required for inducing phase transition. Then, from the data obtained in short-pulse measurements, we estimate the specific heat. In principle this method can yield the thermal parameters of any number of layers, so long as one of the layers is made of a phase-change material having a well-defined transition temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号