首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Metal–oxide–semiconductor (MOS) capacitors based on HfO2 gate stacks with Al and TiN gates are compared to study the effect of the gate electrode material to the properties of insulator–semiconductor interface. The structures under study were shown to contain interface trap densities of around 2 × 1011 cm−2 eV−1 for Al gate and up to 5.5 × 1012 cm−2 eV−1 for TiN gate. The peak in the surface state distribution was found at 0.19 eV above the valence band edge for Al electrode. The respective capture cross-section is 6 × 10−17 cm2 at 200 K.The charge injection experiments have revealed the presence of hole traps inside the dielectric layer. The Al-gate structure contains traps with effective capture cross-section of 1 × 10−20 cm2, and there are two types of traps in the TiN-gate structure with cross-sections of 3.5 × 10−19 and 1 × 10−20 cm2. Trap concentration in the structure with Al electrode was considerably lower than in the structure with TiN electrode.  相似文献   

2.
MOSFETs and MOSCs incorporating HfO2 gate dielectrics were fabricated. The IDSVDS, IDSVGS, gated-diode and CV characteristics were investigated. The subthreshold swing and the interface trap density were obtained. The surface recombination velocity and the minority carrier lifetime in the field-induced depletion region measured from the gated diodes were about 2.73 × 103 cm/s and 1.63 × 10−6 s, respectively. The effective capture cross section of surface state was determined to be 1.6 × 10−15 cm2 using the gated-diode technique in comparison with the subthreshold swing measurement. A comparison with conventional MOSFETs using SiO2 gate oxide was also made.  相似文献   

3.
The energy distribution of extended and localized electron states at the Ge/HfO2 interface is determined by combining the internal photoemission of electrons and holes from Ge into the Hf oxide and AC capacitance/conductance measurements. The inferred offsets of the conduction and valence band at the interface, i.e., 2.0 ± 0.1 and 3.0 ± 0.1 eV, respectively, suggest the possibility to apply the deposited HfO2 layer as a suitable insulator on Ge. The post-deposition annealing of the Ge/HfO2 structures in oxygen results in 1 eV reduction of the valence band offset, which is attributed to the growth of a GeO2 interlayer. However, this treatment enables one to substantially reduce the density of Ge/HfO2 interface traps, approaching ≈1×1012 cm−2 eV−1 near the Ge midgap.  相似文献   

4.
MOS capacitors were produced on n-type 4H-SiC using oxidized polycrystalline silicon (polyoxide). The polyoxide samples grown by dry oxidation without an anneal had a high interface state density (Dit) of 1.8 × 1012 cm−2 eV−1 and the polyoxide samples grown by wet oxidation had a lower Dit of 1.2 × 1012 cm−2 eV−1 (both at 0.5 eV below the conduction band). After 1 h Ar annealing, the Dit of wet polyoxide was reduced significantly to 2.6 × 1011 cm−2 eV−1 (at 0.5 eV below the conduction band). Dry polyoxide exhibits higher breakdown electric fields than wet polyoxide. The interface quality and breakdown characteristics of polyoxide are comparable to published results of low-temperature CVD deposited oxides.  相似文献   

5.
This work is an attempt to estimate the electrical properties of SiO2 thin films by recording and analyzing their infrared transmission spectra. In order to study a big variety of films having different infrared and electrical properties, we studied SiO2 films prepared by low pressure chemical vapor deposition (LPCVD) from SiH4 + O2 mixtures at 425 °C and annealed at 750 °C and 950 °C for 30 min. In addition thermally grown gate quality SiO2 films of similar thickness were studied in order to compare their infrared and electrical properties with the LPCVD oxides. It was found that all studied SiO2 films have two groups of Si–O–Si bridges. The first group corresponds to bridges located in the bulk of the film and far away from the interfaces, the grain boundaries and defects and the second group corresponds to all other bridges located near the interfaces, the grain boundaries and defects. The relative population of the bulk over the boundary bridges was found equal to 0.60 for the LPCVD film after deposition and increased to 4.0 for the LPCVD films after annealing at 950 °C. Thermally grown SiO2 films at 950 °C were found to have a relative population of Si–O–Si bridges equal to 3.9. The interface trap density of the LPCVD film after deposition was found equal to 5.47 × 1012 eV−1 cm−2 and decreases to 6.50 × 1010 eV−1 cm−2 after annealing at 950 °C for 30 min. The interface trap density of the thermally grown film was found equal to 1.27 × 1011 eV−1 cm−2 showing that films with similar Si–O–Si bridge populations calculated from the FTIR analysis have similar interface trap densities.  相似文献   

6.
We have fabricated thin catalytic metal–insulator–silicon carbide based structure with palladium (Pd) gates using TiO2 as the dielectric. The temperature stability of the capacitor is of critical importance for use in the fabrication of electronics for deployment in extreme environments. We have evaluated the response to temperatures in excess of 450 °C in air and observed that the characteristics are stable. Results of high temperature characterization are presented here with extraction of interface state density up to 650 °C. The results show that at temperatures below 400 °C the capacitors are stable, with a density of interface traps of approximately 6×1011 cm2 eV−1. Above this temperature the CV and GV characteristics show the influence of a second set of traps, with a density around 1×1013 cm2 eV−1, which is close to that observed for slow states near the conduction band edge. The study of breakdown field as a function of temperature shows two distinct regions, below 300 °C where the breakdown voltage has a strong temperature dependence and above 300, where it is weaker. We hypothesize that the oxide layer dominates the breakdown voltage at low temperature and the TiO2 layer above 300 °C. These results at high temperatures confirms the suitability of the Pd/TiO2/SiO2/SiC capacitor structure for stable operation in high temperature environments.  相似文献   

7.
Dependence of oxygen partial pressures on structural and electrical characteristics of HfAlO (Hf:Al=1:1) high-k gate dielectric ultra-thin films grown on the compressively strained Si83Ge17 by pulsed-laser deposition were investigated. The microstructure and the interfacial structure of the HfAlO thin films grown under different oxygen partial pressures were studied by transmission electron microscopy, and the their electrical properties were characterized by capacitance–voltage (CV) and conductance–voltage measurements. Dependence of interfacial layer thickness and CV characteristics of the HfAlO films on the growth of oxygen pressure was revealed. With an optimized oxygen partial pressure, an HfAlO film with an effective dielectric constant of 16 and a low interface state density of 2.1×1010 cm−2 eV−1 was obtained.  相似文献   

8.
Deep level defects in both p+/n junctions and n-type Schottky GaN diodes are studied using the Fourier transform deep level transient spectroscopy. An electron trap level was detected in the range of energies at EcEt=0.23–0.27 eV with a capture cross-section of the order of 10−19–10−16 cm2 for both the p+/n and n-type Schottky GaN diodes. For one set of p+/n diodes with a structure of Au/Pt/p+–GaN/n–GaN/n+–GaN/Ti/Al/Pd/Au and the n-type Schottky diodes, two other common electron traps are found at energy positions, EcEt=0.53–0.56 eV and 0.79–0.82 eV. In addition, an electron trap level with energy position at EcEt=1.07 eV and a capture cross-section of σn=1.6×10−13 cm2 are detected for the n-type Schottky diodes. This trap level has not been previously reported in the literature. For the other set of p+/n diodes with a structure of Au/Ni/p+–GaN/n–GaN/n+–GaN/Ti/Al/Pd/Au, a prominent minority carrier (hole) trap level was also identified with an energy position at EtEv=0.85 eV and a capture cross-section of σn=8.1×10−14 cm2. The 0.56 eV electron trap level observed in n-type Schottky diode and the 0.23 eV electron trap level detected in the p+/n diode with Ni/Au contact are attributed to the extended defects based on the observation of logarithmic capture kinetics.  相似文献   

9.
The physical and electrical properties of hafnium oxide (HfO2) thin films deposited by high pressure reactive sputtering (HPRS) have been studied as a function of the Ar/O2 ratio in the sputtering gas mixture. Transmission electron microscopy shows that the HfO2 films are polycrystalline, except the films deposited in pure Ar, which are amorphous. According to heavy ion elastic recoil detection analysis, the films deposited without using O2 are stoichiometric, which means that the composition of the HfO2 target is conserved in the deposition films. The use of O2 for reactive sputtering results in slightly oxygen-rich films. Metal-Oxide-Semiconductor (MOS) devices were fabricated to determine the deposited HfO2 dielectric constant and the trap density at the HfO2/Si interface (Dit) using the high–low frequency capacitance method. Poor capacitance–voltage (CV) characteristics and high values of Dit are observed in the polycrystalline HfO2 films. However, a great improvement of the electrical properties was observed in the amorphous HfO2 films, showing dielectric constant values close to 17 and a minimum Dit of 2×1011 eV−1 cm−2.  相似文献   

10.
ZrO2 thin films with a smooth surface were synthesized on silicon by atomic vapor deposition™ using Zr[OC(CH3)3]4 as precursor. The maximum growth rate (7 nm min−1) and strongest crystalline phase were obtained at 400 °C. The increase of the deposition temperature reduced the deposition rate to 0.5 nm min−1 and changed the crystalline ZrO2 phase from cubic/tetragonal to monoclinic. These films showed no enhancement of the dominating monoclinic phase by annealing. The values of the dielectric constant (up to 32) and leakage current density (down to 1.2×10−6 A cm−2 at 1×106 V cm−1) varied depending on the deposition temperature and film thickness. The midgap density of interface states was Nit=5×1011 eV−1 cm−2. The leakage current and the density of interface states were lowered by the annealing to 10−7 A cm−2 at 1×106 V cm−1 and to 1010 eV−1 cm−2, respectively. However, this also led to a decrease of the dielectric constant.  相似文献   

11.
In this work hafnium oxide (HfO2) was deposited by r.f. magnetron sputtering at room temperature and then annealed at 200 °C in forming gas (N2+H2) and oxygen atmospheres, respectively for 2, 5 and 10 h. After 2 h annealing in forming gas an improvement in the interface properties occurs with the associated flat band voltage changing from −2.23 to −1.28 V. This means a reduction in the oxide charge density from 1.33×1012 to 7.62×1011 cm−2. After 5 h annealing only the dielectric constant improves due to densification of the film. Finally, after 10 h annealing we notice a degradation of the electrical film's properties, with the flat band voltage and fixed charge density being −2.96 V and 1.64×1012 cm−2, respectively. Besides that, the leakage current also increases due to crystallization. On the other hand, by depositing the films at 200 °C or annealing it in an oxidizing atmosphere no improvements are observed when comparing these data to the ones obtained by annealing the films in forming gas. Here the flat band voltage is more negative and the hysteresis on the CV plot is larger than the one recorded on films annealed in forming gas, meaning a degradation of the interfacial properties.  相似文献   

12.
Conventional SONOS (polysilicon-oxide-nitride-oxide-silicon) non-volatile memory devices use silicon nitride as the charge storage layer. In this work, metal-oxide-high-k dielectric-oxide-silicon (MOHOS) structures are fabricated using HfO2 and Dy2O3 high-k dielectrics as the charge storage layer. The Al/SiO2/Dy2O3/SiO2/Si capacitors have a CV memory window of 1.88 V and a leakage current density of 10−8 A/cm2. This leakage current is lower than those of Al/SiO2/HfO2/SiO2/Si capacitors and other similar capacitors reported in the literature. A minimum detection window of 0.5 V for MOHOS capacitors can be maintained up to 2 × 108 s using as-deposited Dy2O3. The better performance of the Al/SiO2/Dy2O3/SiO2/Si structure over Al/SiO2/HfO2/SiO2/Si is attributed to the larger conduction band offset at the Dy2O3/SiO2 interface (2.3 eV) versus 1.6 eV at the HfO2/SiO2 interface.  相似文献   

13.
The current–voltage and capacitance–voltage characteristics of the nanostructure SnO2/p-Si diode have been investigated. The optical band gap and microstructure properties of the SnO2 film were analyzed by optical absorption method and scanning electron microscopy, respectively. The optical band of the film was found to be 3.58 eV with a direct optical transition. The scanning electron microcopy results show that the SnO2 film has the nanostructure. The ideality factor, barrier height and series resistance values of the nanostructure SnO2/p-Si diode were found to be 2.1, 0.87 eV and 36.35 kΩ, respectively. The barrier height obtained from CV measurement is higher than obtained from IV measurement and this discrepancy can be explained by introducing a spatial distribution of barrier heights due to barrier height inhomogeneities, which are available at the nanostructure SnO2/p-Si interface. The interface state density of the diode was determined by conductance technique and was found to be 8.41 × 1010 eV−1 cm−2.It is evaluated that the nanostructure of the SnO2 film has an important effect on the ideality factor, barrier height and interface state density parameters of SnO2/p-Si diode.  相似文献   

14.
Long channel Ge FETs and capacitors with CeO2/HfO2/TiN gates were fabricated by photolithography and gate wet etch. Rare earth CeO2 in direct contact with Ge was used as a passivating layer producing lowest Dit values in the mid 1011 eV−1 cm−2 range. HfO2 cap reduces leakage and improves equivalent oxide thickness scaling of the whole gate stack. The p-FETs show exceptionally high ION/IOFF ratio 106, mainly due to low OFF current, and peak channel mobility around 80 cm2/V s. The n-FETs, although functional, show inferior performance producing ON currents an order of magnitude lower compared to p-FETs.  相似文献   

15.
Thin HfTiO gate dielectric is deposited by reactive co-sputtering method followed by wet or dry N2 anneal. The effects of Ti content on the performance of HfTiO gate dielectric are investigated by using different sputtering powers for the Ti target. Experimental results indicate that as the Ti content increases, the dielectric constant (κ) can increase up to 40 for a Ti content of 28%. However, when the Ti content is too high, the interface properties and gate leakage properties are deteriorated. On the contrary, results show that owing to the hydrolyzable property of GeOx, the wet-N2 anneal can greatly suppress the growth of unstable low-κ GeOx interlayer, resulting in lower interface-state density and gate leakage current, in addition to larger κ value. In this study, when the sputtering power of the Ti target is 80 W together with a 25-W power for the Hf target and a post-deposition anneal (PDA) in wet-N2 ambient at 500 °C for 300 s, excellent device performance is achieved: equivalent oxide thickness of 0.72 nm, equivalent dielectric constant of 39, interface-state density of 6.5 × 1011 eV−1 cm−2 and gate leakage current of 5.7 × 10−4 A/cm2 at Vg = 1 V. Therefore, in order to obtain high-quality HfTiO gate dielectric for small-scaled Ge MOS devices, not only should the Ti content be optimized, the PDA should also be done in a wet-N2 ambient.  相似文献   

16.
The paper focuses on the study of charge trapping processes in high-k MOS structures at cryogenic temperatures. It was shown, that there is extremely strong trapping in shallow electron and hole traps, localized in the high-k dielectrics. Concentration of shallow electron traps is as much as 1013 cm−2, while abnormal small capture cross-sections (4.5–8 × 10−24 cm2 for different samples, accordingly) suggests localization of shallow emitting electron traps in transition layer “high-k dielectric/Si”, more, than at the interface. Shallow hole traps with concentration near 1012 cm−2 are separated from silicon valence band with energy barrier in the range 10–39 meV for different samples.  相似文献   

17.
In this paper, HfO2 dielectric films with blocking layers (BL) of Al2O3 were deposited on high resistivity silicon-on-insulator (HRSOI), and the interfacial and electrical properties are reported. High-resolution transmission electron microscopy (HRTEM) indicated that BL could thin the interfacial layer, keep the interface smooth, and retain HfO2 amorphous after annealing. Energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) confirmed that BL weaken Si diffusion and suppressed the further growth of HfSiO. Electrical measurements indicated that there was no hysteresis was observed in capacitance–voltage curves, and Flatband shift and interface state density is 0.05 V and −1.3 × 1012 cm−2, respectively.  相似文献   

18.
Distribution of interface states at the emitter–base heterojunctions in heterostructure bipolar transistors (HBTs) is characterized by using current–voltage characteristics using sub-bandgap photonic excitation. Sub-bandgap photonic source with a photon energy Eph which is less than the energy bandgap Eg (Eg,GaAs = 1.42, Eg,AlGaAs = 1.76 eV) of emitter, base, and collector of HBTs, is employed for exclusive excitation of carriers only from the interface states in the photo-responsive energy range at emitter–base heterointerface. The proposed method is applied to an Al0.3Ga0.7As/GaAs HBT (AE = WE × LE = 250 × 100 μm2) with Eph = 0.943 eV and Popt = 3 mW. Extracted interface trap density Dit was observed to be Dit,max  4.2 × 1012 eV−1 cm−2 at emitter–base heterointerface.  相似文献   

19.
《Microelectronic Engineering》2007,84(9-10):1968-1971
Charge trapping in ultrathin high-k Gd2O3 dielectric leading to appearance of hysteresis in C-V curves is studied by capacitance-voltage and current-voltage techniques. It was shown that the large leakage current at a negative gate voltage causes the generation of the positive charge in the dielectric layer, resulting in the respective shift of the C-V curve. The capture cross-section of the hole traps is around 2 × 10−20 cm2. The distribution of the interface states was measured by conductance technique showing the concentration up to 7.5 × 1012 eV−1 cm−2 near the valence band edge.  相似文献   

20.
The electrical characteristics of both n- and p-type GaN metal-oxide semiconductor (MOS) capacitors utilizing plasma-enhanced CVD-SiO2 as the gate dielectric were measured. Both capacitance and conductance techniques were used to obtain the MOS properties (such as interface state density). Devices annealed at 1000°C/30 min. in N2 yielded an interface state density of 3.8×1010 cm−2 eV−1 at 0.19 eV from the conduction band edge, and it decreased to 1.1×1010 cm−2 eV−1 deeper into the band gap. A total fixed oxide charge density of 8×1012 q cm−2 near the valence band was estimated. Unlike the symmetric interface state density distribution in Si, an asymmetric interface state density distribution with lower density near the conduction band and higher density near the valence band was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号