首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
采用数值模拟的方法对某浮法玻璃熔窑底烧式喷枪的安装仰角进行模拟优化,具体从熔窑火焰空间温度分布、燃烧效率、玻璃液面热流量和碹顶温度分布等角度来对喷枪仰角为0°、3°、5°、7°、9°、11°、13°这7种情况进行对比分析。研究结果表明:喷枪安装仰角的增大有利于燃料和助燃气体的充分混合和燃烧,但当仰角大于5°时,角度的增大对燃烧效率和平均温度影响不大;仰角的增大对碹顶温度分布影响不大,喷枪仰角为3°和5°,传递给玻璃液面的热量较多。因此,此熔窑的天然气喷枪仰角的可调节范围较大,仰角为5°时的燃烧状况较好。  相似文献   

2.
燃油横焰玻璃熔窑火焰空间的三维数值模拟   总被引:1,自引:0,他引:1  
掌握燃油玻璃熔窑火焰空间的温度场、流场分布,对重油燃烧合理组织、设计新熔窑、优化熔窑运行参数、达到玻璃生产优质高产低耗具有重要意义,以计算燃烧学和计算传热学基本理论为基础,建立了燃油玻璃熔窑火焰空间燃烧过程三维数学模型,包括雾化油滴燃烧的轨道模型和气相流动与传热模型,在模型上研究了日产400t燃油浮衍玻璃熔窑火焰空间的流场和温度场分布 ;研究了胸墙高度改变对温度场和流场的影响。 模拟结果表明火焰高温区、温度最高处、双热点位置等与原设计温度制度吻合,降低胸墙高度会使温度有所提高,各小炉中心线截面靠近窑顶位置纵向回流出现较早,不利于火焰伸展,会影响窑顶使用寿命。该模型具有改变参数容易,不受环境影响,具有相当通用性,有较大的实用意义。  相似文献   

3.
介绍了全氧燃烧玻璃熔窑及其数值模拟的特点和最新研究情况,归纳了建立全氧燃烧火焰空间数值模拟的各种模型,阐述了玻璃熔窑数值模拟的发展趋势.全氧燃烧的显著优点和与数值模拟的相结合将会为玻璃行业开拓一条广阔的发展道路.  相似文献   

4.
对全氧燃烧玻璃熔窑与空气燃烧熔窑进行了热工过程计算与比较,分析了全氧燃烧玻璃窑内烟气变化及其对传热的影响,证明了全氧燃烧在节能和减少污染方面显著的优点,并简述了全氧燃烧技术对玻璃工业的推动作用.  相似文献   

5.
模拟计算了日熔化量600t的全氧燃烧型浮法玻璃熔窑液流流场,并模拟对比研究了具有多级池底台面的全氧燃烧型浮法玻璃熔窑和池底无台面的普通空气助燃型浮法玻璃熔窑,在玻璃液流表层、熔窑中心线处以及池底的温度场和速度场的差异。为研究全氧燃烧型浮法玻璃熔窑熔体流场稳定性,玻璃熔体气泡澄清,玻璃端面条纹和玻璃液4个主要环流等问题,提供数学依据和参考模型。并通过模拟研究提出了改善措施,使全氧燃烧型浮法玻璃窑炉实际生产中玻璃端面条纹紊乱现象得到明显改善。  相似文献   

6.
为研究富氧燃烧技术在陶瓷窑炉中的实际传热现象,以液化气为燃料在富氧燃烧试验台上进行富氧试验。研究不同富氧燃烧条件下,烟气的组成和辐射率、烟气热损失及燃料消耗量的变化,结合火焰空间系统零维传热数学模型,分析富氧燃烧对传热过程及节能效果的影响,探讨提高空间传热效率、降低能量损失的有效途径,为富氧技术在陶瓷窑炉中的实际利用提供可靠依据。研究结果表明:在富氧燃烧过程中,随着氧浓度的增加,烟气量的减少,烟气中的CO2和H2O体积浓度增大,烟气发射率增大,尤其是当氧浓度达到24%~30%时迅速增加,辐射换热能力增强;换热空间的传热能力明显增强,有利于热利用效率的提高;烟气所造成的热损失减少,热利用率得到提高;在维持一定窑炉温度时,燃烧消耗量下降,相对节能效果在氧浓度偏高的状态下较为明显。  相似文献   

7.
陶瓷窑炉中富氧燃烧火焰特性的试验研究   总被引:1,自引:1,他引:0  
以单节辊道窑的结构形式设计物理模型进行富氧燃烧试验研究,在不同氧浓度条件下,从火焰形貌、火焰温度分布、火焰传播等方面分析富氧燃烧技术对火焰特性的影响,为窑炉设计及富氧喷枪设计与布置提供依据。研究结果表明:当氧浓度从21%增加至30%时,火焰亮度逐渐增加;火焰长度逐渐缩短并向喷枪口处收缩;最高火焰温度明显提高,且火焰最高温度出现位置向喷枪口靠近;轴向火焰温度分布趋向集中,在设计窑炉时应该注意火焰长度方向的尺寸;火焰前沿速度逐渐降低,引起温度梯度变大,火焰覆盖面积减小,需要设计可用于富氧燃烧的可调节式燃烧器,以保证在不同氧气浓度下,火焰处于稳定燃烧状态。  相似文献   

8.
基于Ansys Fluent 19.2软件采用玻璃液面与火焰空间底部双向热耦合方式进行三维联合建模,对日拉引量为100 t/d的全氧燃烧浮法高铝玻璃熔窑的玻璃池窑与火焰空间进行数值工程仿真,考察入口预设配合料堆长度对耦合区温度连续性的影响,提出基于3D流场的澄清因子计算公式. 结果表明:在8次热耦合迭代后,温度和热流残差趋于稳定,玻璃液与火焰空间进行热交换部分的热流分布与火焰空间底面温度分布相对应,火焰空间温度场在玻璃液产生了不对称的横向对流;预设6.6 m料堆长度的温度曲线具有最好的连续性,该试探性计算提供了判断玻璃配合料山长度的新方法;计算得到热耦合与非热耦合的澄清因子分别为4.6425、4.8279,表明常规非热耦合计算高估了池窑的澄清能力.  相似文献   

9.
通过建立玻璃池窑的零维传热模型和配合料的一维非稳态数学模型及其数值模拟,定量揭示了配合料的导热系数,火焰空间燃烧产物,火焰黑度对配合料传热效果的影响,表明了配合料粒化或压实后导热系数由0.2w/m·℃增大到0.4w/m·℃时,其节能14%以上,火焰黑度由0.2~0.85时,火焰空间传给配合料的热流量增加3~5倍。  相似文献   

10.
以日产400 t的浮法玻璃熔窑的火焰空间为对象进行数值模拟,燃烧纯氧(93%的O2)和天然气(97%的CH4)的混合气体。网格划分采用Gambit软件,数值计算程序采用Fluent软件,建立了非预混燃烧模型、DO模型、湍流模型等模拟玻璃熔窑火焰空间的温度分布。从模拟结果可以看出,窑内高温分布合理,有利于玻璃的熔制;喷枪交错排列,有利于在炉宽方向上温度均匀分布。最后重点分析了火焰空间中水分的含量及其对玻璃质量的影响。  相似文献   

11.
建立了高炉热风炉眼睛形燃烧室内流动场数学模型,应用计算机模拟研究方法对不同燃烧器燃烧热烟气在燃烧室内流动进行了模拟研究,得到了眼睛形燃烧室内气体流动的基本特征.  相似文献   

12.
针对某热电厂220 t/h锅炉运行中结焦、燃烧不稳、熄火等问题,进行燃烧调整试验.调整后,各一次风管的风速趋于平衡,燃烧器出口温度和炉膛温度都有了一定程度的降低,炉内燃烧的空气动力场特性和火焰温度分布得到明显改善.燃烧调整试验较好地改善了炉内燃烧特性,有效地减少了锅炉结焦、结渣和熄火现象.  相似文献   

13.
We prepared a series of glass samples under the different simulated atmosphere. Systematic evaluation about the performances of the glasses fabricated under the different simulated atmosphere indicates that the increase of the H2O:CO2 ratio under the simulated atmosphere will decrease the softening point temperature, microhardness, viscosity, and chemical resistance, while increase the thermal expansion coefficient. Through the analysis of the hydroxyl content and network structure according to the IR transmitting spectra and NMR spectra, the structural origin of the evolution of the performances for the samples fabricated under different simulated atmosphere was elucidated. According to the feedback information from the customers, despite the decrease of some performances, the glass produced under oxy-fuel combustion can also fulfill the requirements of the engineering applications. Therefore, the technique of oxy-fuel combustion is worthy to be promoted in glass industry.  相似文献   

14.
高炉喷吹煤粉的理论研究   总被引:2,自引:0,他引:2  
给出了置换比与煤粉燃烧率之间的定量关系式,以高炉所允许的最低煤粉燃烧率ηmin为依据,明确地提出了最佳喷吹位置(氧煤燃烧器的位置)在具体的生产条件下高炉所允许的最高煤比和最佳煤比的概念,对各种型式的氧煤燃烧器进行了比较,认为双枪螺旋式氧煤燃烧器和同轴双螺旋式氧煤枪优于其它类型的氧煤枪。  相似文献   

15.
为了掌握不同气氛下褐煤热解与富氧燃烧的特性以及其之间的联系,在管式炉反应器上利用锡盟褐煤在N2和CO2气氛以及600~1 000 °C条件下进行热解. 进一步对其在O2/N2以及O2/CO2气氛下进行富氧燃烧实验,考察不同反应温度(600~1 000 °C)以及不同氧气体积分数(21%~60%)条件下的富氧燃烧特性,结合热解实验结果探究CO2气化反应对富氧燃烧的影响. 结果表明,CO2气氛中锡盟褐煤在700 °C时开始CO2气化反应,随温度增加气化反应增强,CO2主要通过高温区的气化反应来影响煤热解及燃烧,700 °C以上气化反应能促进富氧燃烧进程. 对于O2/CO2气氛的富氧燃烧,当氧气体积分数为30%时,在800 °C以下温度对CO氧化反应影响更大,而在800 °C以上温度对CO2气化反应影响更大. 当氧气体积分数相同时,O2/N2以及O2/CO2气氛下褐煤富氧燃烧反应时间差异不大.  相似文献   

16.
锅炉燃烧劣质煤时易产生的问题是燃烧效率低、燃烧不稳定易灭火、炉内易结焦、高温腐蚀及大气污染严重。直流浓淡燃烧器能够形成高浓度煤粉 ,具有稳定燃烧、降低 NOx 和 SOx 排放量的优点。垂直浓淡 ( PM、FW)燃烧器在运行中易出现结焦和高温腐蚀问题 ,而水平浓淡燃烧器却能防止炉内结焦及高温腐蚀的产生。本文通过双通道直流浓淡燃烧器的工作原理及应用的实例加以论述水平浓淡燃烧器在防止结焦方面比垂直浓淡燃烧器优越  相似文献   

17.
By analyzing the characteristics of combustion and billet heating process, a 3-D transient computer fluid dynamic simulation system based on commercial software CFX4.3 and some self-programmed codes were developed to simulate the thermal process in a continuous heating furnace using high temperature air combustion technology. The effects of different switching modes on injection entrancement of multi burners, combustion and billet heating process in furnace were analyzed numerically, and the computational results were compared with on-site measurement, which verified the practicability of this numerical simulation system. The results indicate that the flow pattern and distribution of temperature in regenerative reheating furnace with partial same-side-switching combustion mode are favorable to satisfy the high quality requirements of reheating, in which the terminal heating temperature of billets is more than 1 460 K and the temperature difference between two nodes is not more than 10 K. But since the surface average temperature of billets apart fi'om heating zone is only about 1 350 K and continued heating is needed in soaking zone, the design and operation of current state are still needed to be optimized to improve the temperature schedule of billet heating. The distribution of velocity and temperature in regenerative reheating furnace with same-side-switching combustion mode cannot satisfy the even and fast heating process. The terminal heating temperature of billets is lower than that of the former case by 30 K. The distribution of flow and temperature can be improved by using cross-switching combustion mode, whose terminal temperature of billets is about 1 470 K with small temperature difference within 10 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号